Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2023 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-37873171

RESUMO

Infection by intracellular pathogens can trigger activation of the IRE1α branch of the unfolded protein response (UPR), which then modulates innate immunity and infection outcomes during bacterial or viral infection. However, the mechanisms by which infection activates IRE1α have not been fully elucidated. While recognition of microbe-associated molecular patterns can activate IRE1α, it is unclear whether this depends on the canonical role of IRE1α in detecting misfolded proteins. Here, we report that Candida albicans infection of macrophages results in IRE1α activation through C-type lectin receptor signaling, reinforcing a role for IRE1α as a central regulator of host responses to infection by a broad range of pathogens. However, IRE1α activation was not preceded by protein misfolding in response to either C. albicans infection or lipopolysaccharide treatment, implicating a non-canonical mode of IRE1α activation after recognition of microbial patterns. Investigation of the phenotypic consequences of IRE1α activation in macrophage antimicrobial responses revealed that IRE1α activity enhances the fungicidal activity of macrophages. Macrophages lacking IRE1α activity displayed inefficient phagolysosomal fusion, enabling C. albicans to evade fungal killing and escape the phagosome. Together, these data provide mechanistic insight for the non-canonical activation of IRE1α during infection, and reveal central roles for IRE1α in macrophage antifungal responses.

2.
PLoS Biol ; 21(5): e3001822, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37205709

RESUMO

Candida albicans is a frequent colonizer of human mucosal surfaces as well as an opportunistic pathogen. C. albicans is remarkably versatile in its ability to colonize diverse host sites with differences in oxygen and nutrient availability, pH, immune responses, and resident microbes, among other cues. It is unclear how the genetic background of a commensal colonizing population can influence the shift to pathogenicity. Therefore, we examined 910 commensal isolates from 35 healthy donors to identify host niche-specific adaptations. We demonstrate that healthy people are reservoirs for genotypically and phenotypically diverse C. albicans strains. Using limited diversity exploitation, we identified a single nucleotide change in the uncharacterized ZMS1 transcription factor that was sufficient to drive hyper invasion into agar. We found that SC5314 was significantly different from the majority of both commensal and bloodstream isolates in its ability to induce host cell death. However, our commensal strains retained the capacity to cause disease in the Galleria model of systemic infection, including outcompeting the SC5314 reference strain during systemic competition assays. This study provides a global view of commensal strain variation and within-host strain diversity of C. albicans and suggests that selection for commensalism in humans does not result in a fitness cost for invasive disease.


Assuntos
Candida albicans , Simbiose , Humanos , Candida albicans/genética , Fatores de Transcrição/genética , Regulação da Expressão Gênica
3.
J Mol Biol ; 434(6): 167247, 2022 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-34537236

RESUMO

Signaling initiated by type I interferon (IFN) results in the induction of hundreds of IFN-stimulated genes (ISGs). The type I IFN response is important for antiviral restriction, but aberrant activation of this response can lead to inflammation and autoimmunity. Regulation of this response is incompletely understood. We previously reported that the mRNA modification m6A and its deposition enzymes, METTL3 and METTL14 (METTL3/14), promote the type I IFN response by directly modifying the mRNA of a subset of ISGs to enhance their translation. Here, we determined the role of the RNA demethylase fat mass and obesity-associated protein (FTO) in the type I IFN response. FTO, which can remove either m6A or cap-adjacent m6Am RNA modifications, has previously been associated with obesity and body mass index, type 2 diabetes, cardiovascular disease, and inflammation. We found that FTO suppresses the transcription of a distinct set of ISGs, including many known pro-inflammatory genes, and that this regulation requires its catalytic activity but is not through the actions of FTO on m6Am. Interestingly, depletion of FTO led to activation of the transcription factor STAT3, whose role in the type I IFN response is not well understood. This activation of STAT3 increased the expression of a subset of ISGs. Importantly, this increased ISG induction resulting from FTO depletion was partially ablated by depletion of STAT3. Together, these results reveal that FTO negatively regulates STAT3-mediated signaling that induces proinflammatory ISGs during the IFN response, highlighting an important role for FTO in suppression of inflammatory genes.


Assuntos
Dioxigenase FTO Dependente de alfa-Cetoglutarato , Regulação da Expressão Gênica , Inflamação , Interferon Tipo I , Fator de Transcrição STAT3 , Dioxigenase FTO Dependente de alfa-Cetoglutarato/genética , Dioxigenase FTO Dependente de alfa-Cetoglutarato/metabolismo , Expressão Gênica , Humanos , Inflamação/genética , Interferon Tipo I/metabolismo , Metiltransferases/metabolismo , RNA Mensageiro/genética , Fator de Transcrição STAT3/genética , Fator de Transcrição STAT3/metabolismo
4.
Cell Rep ; 34(9): 108798, 2021 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-33657363

RESUMO

Type I interferons (IFNs) induce hundreds of IFN-stimulated genes (ISGs) in response to viral infection. Induction of these ISGs must be regulated for an efficient and controlled antiviral response, but post-transcriptional controls of these genes have not been well defined. Here, we identify a role for the RNA base modification N6-methyladenosine (m6A) in the regulation of ISGs. Using ribosome profiling and quantitative mass spectrometry, coupled with m6A-immunoprecipitation and sequencing, we identify a subset of ISGs, including IFITM1, whose translation is enhanced by m6A and the m6A methyltransferase proteins METTL3 and METTL14. We further determine that the m6A reader YTHDF1 increases the expression of IFITM1 in an m6A-binding-dependent manner. Importantly, we find that the m6A methyltransferase complex promotes the antiviral activity of type I IFN. Thus, these studies identify m6A as having a role in post-transcriptional control of ISG translation during the type I IFN response for antiviral restriction.


Assuntos
Adenosina/análogos & derivados , Biossíntese de Proteínas , Processamento Pós-Transcricional do RNA , Transcrição Gênica , Estomatite Vesicular/genética , Vesiculovirus/patogenicidade , Células A549 , Adenosina/metabolismo , Animais , Antígenos de Diferenciação/biossíntese , Antígenos de Diferenciação/genética , Antivirais/farmacologia , Chlorocebus aethiops , Células HEK293 , Interações Hospedeiro-Patógeno , Humanos , Interferon beta/farmacologia , Metiltransferases/biossíntese , Metiltransferases/genética , Biossíntese de Proteínas/efeitos dos fármacos , Processamento Pós-Transcricional do RNA/efeitos dos fármacos , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Transcrição Gênica/efeitos dos fármacos , Células Vero , Estomatite Vesicular/metabolismo , Estomatite Vesicular/virologia , Vesiculovirus/crescimento & desenvolvimento , Replicação Viral
5.
Trends Biochem Sci ; 46(5): 366-377, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33309325

RESUMO

Recent discoveries have revealed that, during viral infection, the presence of the RNA modification N6-methyladenosine (m6A) on viral and cellular RNAs has profound impacts on infection outcome. Although m6A directly regulates many viral RNA processes, its effects on cellular RNAs and pathways during infection have only recently begun to be elucidated. Disentangling the effects of m6A on viral and host RNAs remains a challenge for the field. m6A has been found to regulate host responses such as viral RNA sensing, cytokine responses, and immune cell functions. We highlight recent findings describing how m6A modulates host responses to viral infection and discuss future directions that will lead to a synergistic understanding of the processes by which m6A regulates viral infection.


Assuntos
Viroses , Adenosina/análogos & derivados , Citocinas , Humanos , Imunidade Inata , RNA Viral
6.
Sci Adv ; 6(14): eaay3245, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32270034

RESUMO

In the skin, antiviral proteins and other immune molecules serve as the first line of innate antiviral defense. Here, we identify and characterize the induction of cutaneous innate antiviral proteins in response to IL-27 and its functional role during cutaneous defense against Zika virus infection. Transcriptional and phenotypic profiling of epidermal keratinocytes treated with IL-27 demonstrated activation of antiviral proteins OAS1, OAS2, OASL, and MX1 in the skin of both mice and humans. IL-27-mediated antiviral protein induction was found to occur in a STAT1- and IRF3-dependent but STAT2-independent manner. Moreover, using IL27ra mice, we demonstrate a significant role for IL-27 in inhibiting Zika virus morbidity and mortality following cutaneous, but not intravenous, inoculation. Together, our results demonstrate a critical and previously unrecognized role for IL-27 in cutaneous innate antiviral immunity against Zika virus.


Assuntos
Resistência à Doença , Interações Hospedeiro-Patógeno , Imunidade Inata , Interleucinas/metabolismo , Transdução de Sinais , Infecção por Zika virus/etiologia , Infecção por Zika virus/metabolismo , Zika virus/imunologia , Biomarcadores , Linhagem Celular , Células Cultivadas , Citocinas/metabolismo , Resistência à Doença/imunologia , Expressão Gênica , Interações Hospedeiro-Patógeno/imunologia , Humanos , Queratinócitos/imunologia , Queratinócitos/metabolismo , Queratinócitos/virologia , Fator de Transcrição STAT1/metabolismo , Pele/imunologia , Pele/metabolismo , Pele/virologia
7.
J Biol Chem ; 294(39): 14231-14240, 2019 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-31375559

RESUMO

Innate immune detection of viral nucleic acids during viral infection activates a signaling cascade that induces type I and type III IFNs as well as other cytokines, to generate an antiviral response. This signaling is initiated by pattern recognition receptors, such as the RNA helicase retinoic acid-inducible gene I (RIG-I), that sense viral RNA. These sensors then interact with the adaptor protein mitochondrial antiviral signaling protein (MAVS), which recruits additional signaling proteins, including TNF receptor-associated factor 3 (TRAF3) and TANK-binding kinase 1 (TBK1), to form a signaling complex that activates IFN regulatory factor 3 (IRF3) for transcriptional induction of type I IFNs. Here, using several immunological and biochemical approaches in multiple human cell types, we show that the GTPase-trafficking protein RAB1B up-regulates RIG-I pathway signaling and thereby promotes IFN-ß induction and the antiviral response. We observed that RAB1B overexpression increases RIG-I-mediated signaling to IFN-ß and that RAB1B deletion reduces signaling of this pathway. Additionally, loss of RAB1B dampened the antiviral response, indicated by enhanced Zika virus infection of cells depleted of RAB1B. Importantly, we identified the mechanism of RAB1B action in the antiviral response, finding that it forms a protein complex with TRAF3 to facilitate the interaction of TRAF3 with mitochondrial antiviral signaling protein. We conclude that RAB1B regulates TRAF3 and promotes the formation of innate immune signaling complexes in response to nucleic acid sensing during RNA virus infection.


Assuntos
Imunidade Inata , Fator 3 Associado a Receptor de TNF/metabolismo , Infecção por Zika virus/imunologia , Proteínas rab1 de Ligação ao GTP/metabolismo , Animais , Chlorocebus aethiops , Proteína DEAD-box 58/metabolismo , Células HEK293 , Humanos , Interferon beta/metabolismo , Ligação Proteica , Receptores Imunológicos , Transdução de Sinais , Células Vero
8.
Proc Natl Acad Sci U S A ; 115(45): 11513-11518, 2018 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-30341219

RESUMO

RNA virus genomes are efficient and compact carriers of biological information, encoding information required for replication both in their primary sequences and in higher-order RNA structures. However, the ubiquity of RNA elements with higher-order folds-in which helices pack together to form complex 3D structures-and the extent to which these elements affect viral fitness are largely unknown. Here we used single-molecule correlated chemical probing to define secondary and tertiary structures across the RNA genome of dengue virus serotype 2 (DENV2). Higher-order RNA structures are pervasive and involve more than one-third of nucleotides in the DENV2 genomic RNA. These 3D structures promote a compact overall architecture and contribute to viral fitness. Disrupting RNA regions with higher-order structures leads to stable, nonreverting mutants and could guide the development of vaccines based on attenuated RNA viruses. The existence of extensive regions of functional RNA elements with tertiary folds in viral RNAs, and likely many other messenger and noncoding RNAs, means that there are significant regions with pocket-containing surfaces that may serve as novel RNA-directed drug targets.


Assuntos
Capsídeo/ultraestrutura , Vírus da Dengue/ultraestrutura , Genoma Viral , RNA Viral/ultraestrutura , Pareamento de Bases , Capsídeo/química , Capsídeo/metabolismo , Vírus da Dengue/classificação , Vírus da Dengue/genética , Vírus da Dengue/metabolismo , Aptidão Genética , Modelos Moleculares , Conformação de Ácido Nucleico , RNA Viral/genética , RNA Viral/metabolismo , Sorogrupo , Montagem de Vírus/genética
9.
Viruses ; 10(2)2018 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-29495257

RESUMO

Zika virus (ZIKV) is a re-emerging flavivirus that is transmitted to humans through the bite of an infected mosquito or through sexual contact with an infected partner. ZIKV infection during pregnancy has been associated with numerous fetal abnormalities, including prenatal lethality and microcephaly. However, until recent outbreaks in the Americas, ZIKV has been relatively understudied, and therefore the biology and pathogenesis of ZIKV infection remain incompletely understood. Better methods to study ZIKV infection in live cells could enhance our understanding of the biology of ZIKV and the mechanisms by which ZIKV contributes to fetal abnormalities. To this end, we developed a fluorescent cell-based reporter system allowing for live imaging of ZIKV-infected cells. This system utilizes the protease activity of the ZIKV non-structural proteins 2B and 3 (NS2B-NS3) to specifically mark virus-infected cells. Here, we demonstrate the utility of this fluorescent reporter for identifying cells infected by ZIKV strains of two lineages. Further, we use this system to determine that apoptosis is induced in cells directly infected with ZIKV in a cell-autonomous manner. Ultimately, approaches that can directly track ZIKV-infected cells at the single cell-level have the potential to yield new insights into the host-pathogen interactions that regulate ZIKV infection and pathogenesis.


Assuntos
Técnicas Citológicas/métodos , Genes Reporter/genética , Microscopia de Fluorescência , Imagem Óptica , Proteínas não Estruturais Virais/genética , Infecção por Zika virus/virologia , Zika virus/genética , Transporte Ativo do Núcleo Celular , Animais , Morte Celular , Linhagem Celular , Núcleo Celular/metabolismo , Proteínas de Fluorescência Verde/genética , Humanos , Plasmídeos , Serina Endopeptidases/metabolismo , Virologia , Zika virus/classificação , Infecção por Zika virus/patologia
10.
ISME J ; 12(1): 277-288, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29099491

RESUMO

A host's immune system plays a central role in shaping the composition of the microbiota and, in return, resident microbes influence immune responses. Symbiotic associations of the maternally transmitted bacterium Wolbachia occur with a wide range of arthropods. It is, however, absent from the dengue and Zika vector mosquito Aedes aegypti in nature. When Wolbachia is artificially forced to form symbiosis with this new mosquito host, it boosts the basal immune response and enhances the mosquito's resistance to pathogens, including dengue, Zika virus and malaria parasites. The mechanisms involved in establishing a symbiotic relationship between Wolbachia and A. aegypti, and the long-term outcomes of this interaction, are not well understood. Here, we have demonstrated that both the immune deficiency (IMD) and Toll pathways are activated by the Wolbachia strain wAlbB upon its introduction into A. aegypti. Silencing the Toll and IMD pathways via RNA interference reduces the wAlbB load. Notably, wAlbB induces peptidoglycan recognition protein (PGRP)-LE expression in the carcass of A. aegypti, and its silencing results in a reduction of symbiont load. Using transgenic mosquitoes with stage-specific induction of the IMD and Toll pathways, we have shown that elevated wAlbB infection in these mosquitoes is maintained via maternal transmission. These results indicate that host innate immunity is utilized to establish and promote host-microbial symbiosis. Our results will facilitate a long-term projection of the stability of the Wolbachia-A. aegypti mosquito system that is being developed to control dengue and Zika virus transmission to humans.


Assuntos
Aedes/microbiologia , Imunidade Inata , Mosquitos Vetores/microbiologia , Simbiose/fisiologia , Wolbachia/fisiologia , Aedes/imunologia , Animais , Mosquitos Vetores/imunologia , Receptores Toll-Like/metabolismo
11.
Front Microbiol ; 8: 366, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28337184

RESUMO

The endosymbiont Wolbachia wAlbB induces refractoriness to Plasmodium falciparum in Anopheles stephensi, the primary mosquito vector of human malaria in the Middle East and South Asia. However, it remains unknown whether such refractoriness can be extended to other malaria species. In particular, it was reported that under very specific conditions, wAlbB can enhance Plasmodium infection in some hosts. Here, we measured the impact of wAlbB on the rodent malaria parasite Plasmodium berghei in A. stephensi by comparing the load of oocysts and sporozoites in midguts and salivary glands, respectively, between wAlbB-infected and -uninfected mosquitoes. To investigate whether wAlbB modulated mosquito immune defense against parasites, we compared the expression of the immune genes, which were previously reported to involve in antimalarial response, in both midguts and the remaining carcass tissues of mosquitoes. The stable association of wAlbB with A. stephensi resulted in reduction of parasites by more than half at the oocyst stage, and up to 91.8% at the sporzoite stage. The anti-plasmodium immune genes, including TEP1, LRIM1, Toll pathway gene Rel1 and the effector Defensin 1, were induced by wAlbB in different mosquito body tissues. These findings suggest that immune priming is a potential cause of wAlbB-mediated antimalarial response in A. stephensi. More importantly, no evidence was found for any enhancement of Plasmodium infection in A. stephensi stably infected with wAlbB. We discuss these findings with possible implementations of Wolbachia for malaria control in disease endemic areas.

12.
Curr Opin Virol ; 22: 36-43, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27951430

RESUMO

The ability to recognize invading viral pathogens and to distinguish their components from those of the host cell is critical to initiate the innate immune response. The efficiency of this detection is an important factor in determining the susceptibility of the cell to viral infection. Innate sensing of viruses is, therefore, an indispensable step in the line of defense for cells and organisms. Recent discoveries have uncovered novel sensors of viral components and hallmarks of infection, as well as mechanisms by which cells discriminate between self and non-self. This review highlights the mechanisms used by cells to detect viral pathogens in the cytosol, and recent advances in the field of cytosolic sensing of viruses.


Assuntos
Citosol/imunologia , Citosol/virologia , Imunidade Inata , Receptores Imunológicos/metabolismo , Vírus/imunologia , Animais , Humanos
13.
Cell Host Microbe ; 20(5): 654-665, 2016 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-27773535

RESUMO

The RNA modification N6-methyladenosine (m6A) post-transcriptionally regulates RNA function. The cellular machinery that controls m6A includes methyltransferases and demethylases that add or remove this modification, as well as m6A-binding YTHDF proteins that promote the translation or degradation of m6A-modified mRNA. We demonstrate that m6A modulates infection by hepatitis C virus (HCV). Depletion of m6A methyltransferases or an m6A demethylase, respectively, increases or decreases infectious HCV particle production. During HCV infection, YTHDF proteins relocalize to lipid droplets, sites of viral assembly, and their depletion increases infectious viral particles. We further mapped m6A sites across the HCV genome and determined that inactivating m6A in one viral genomic region increases viral titer without affecting RNA replication. Additional mapping of m6A on the RNA genomes of other Flaviviridae, including dengue, Zika, yellow fever, and West Nile virus, identifies conserved regions modified by m6A. Altogether, this work identifies m6A as a conserved regulatory mark across Flaviviridae genomes.


Assuntos
Adenosina/análogos & derivados , Flaviviridae/genética , Flaviviridae/fisiologia , Regulação Viral da Expressão Gênica , Interações Hospedeiro-Patógeno , RNA Viral/metabolismo , Replicação Viral , Adenosina/metabolismo , Metiltransferases/metabolismo , Oxirredutases N-Desmetilantes/metabolismo , Carga Viral
14.
Parasit Vectors ; 7: 336, 2014 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-25041943

RESUMO

BACKGROUND: Wolbachia is a maternally transmitted intracellular bacterium that is estimated to infect up to 65% of insect species, but it is not naturally present in Anopheles malaria vectors. Wolbachia-based strategies for malaria vector control can be developed either through population replacement to reduce vectorial capacity or through population suppression to reduce the mosquito population. We have previously generated An. stephensi mosquitoes carrying a stable wAlbB Wolbachia infection and have demonstrated their ability to invade wild-type laboratory populations and confer resistance to Plasmodium on these populations. METHODS: We assessed wAlbB-associated fitness by comparing the female fecundity, immature development and survivorship, body size, male mating competiveness, and adult longevity of the infected An. stephensi to that of wild-type mosquitoes. RESULTS: We found that wAlbB reduced female fecundity and caused a minor decrease in male mating competiveness. We also observed that wAlbB increased the life span of both male and female mosquitoes when they were maintained solely on sugar meals; however, there was no impact on the life span of blood-fed females. In addition, wAlbB did not influence either immature development and survivorship or adult body sizes. CONCLUSIONS: These results provide significant support for developing Wolbachia-based strategies for malaria vector control.


Assuntos
Anopheles/microbiologia , Anopheles/fisiologia , Wolbachia/fisiologia , Animais , Anopheles/genética , Feminino , Fertilidade/fisiologia , Aptidão Genética , Interações Hospedeiro-Patógeno , Masculino , Razão de Masculinidade , Comportamento Sexual Animal , Wolbachia/classificação
15.
Appl Opt ; 45(25): 6358-66, 2006 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-16912771

RESUMO

The use of optical interconnects for communication between points on a microchip is motivated by system-level interconnect modeling showing the saturation of metal wire capacity at the global layer. Free-space optical solutions are analyzed for intrachip communication at the global layer. A multiscale solution comprising microlenses, etched compound slope microprisms, and a curved mirror is shown to outperform a single-scale alternative. Microprisms are designed and fabricated and inserted into an optical setup apparatus to experimentally validate the concept. The multiscale free-space system is shown to have the potential to provide the bandwidth density and configuration flexibility required for global communication in future generations of microchips.

16.
Appl Opt ; 44(33): 7112-24, 2005 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-16318182

RESUMO

A dual-rate (2 Gbit/s and 100 Mbit/s) optical transceiver designed for power-efficient connections within and between modern high-speed digital systems is described. The transceiver can dynamically adjust its data rate according to performance requirements, allowing for power-on-demand operation. Dynamic power management permits energy saving and lowers device operating temperatures, improving the reliability and lifetime of optoelectronic-devices such as vertical-cavity surface-emitting lasers (VCSELs). To implement dual-rate functionality, we include in the transmitter and receiver circuits separate high-speed and low-power data path modules. The high-speed module is designed for gigabit operation to achieve high bandwidth. A simpler low-power module is designed for megabit data transmission with low power consumption. The transceiver is fabricated in a 0.5 microm silicon-on-sapphire complementary metal-oxide semiconductor. The VCSEL and photodetector devices are attached to the transceiver's integrated circuit by flip-chip bonding. A free-space optical link system is constructed to demonstrate correct dual-rate functionality. Experimental results show reliable link operation at 2 Gbit/s and 100 Mbit/s data transfer rates with approximately 104 and approximately 9 mW power consumption, respectively. The transceiver's switching time between these two data rates is demonstrated as 10 micros, which is limited by on-chip register reconfiguration time. Improvement of this switching time can be obtained by use of dedicated input-output pads for dual-rate control signals.

17.
Appl Opt ; 44(29): 6240-52, 2005 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-16237941

RESUMO

Optical links are traditionally set to transmit maximum power for worst-case loss and consequently to dissipate more power than is required. We describe a technique to minimize power consumption based on the measured bit-error rate (BER) of the link. This technique uses a novel power-negotiation algorithm that optimizes the link power setting to achieve minimum power dissipation for a target BER. A 0.5 microm complementary metal-oxide semiconductor optical transceiver chip was fabricated, and a free-space optical interconnect system was built for validation. The results showed that the algorithm was able to find the optimum power settings for the VCSELs for a target BER and to account for dynamic changes such as variation in the optical loss in the system.

18.
Appl Opt ; 41(35): 7480-6, 2002 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-12502306

RESUMO

Experimental validation of a distortion removal technique for multi-chip free-space optical shuffle interconnections is presented. The free-space fabric links dense two-dimensional arrays of vertical cavity surface emitting laser(s) (VCSEL)(s) and detectors and must achieve full field registration on the order of 10 microns across the entire array. The new hybrid micro-macro optical concept realizes the required high-registration accuracy by simultaneously eliminating distortion in each of the interleaved off-axis imaging systems that comprise the complete fabric. This is achieved by exploiting the typically low numerical aperture of VCSELs. Individually tailored beam-deflecting micro-optical elements were used to create symmetry about a central aperture for VCSEL beams in the optical system. Experiments were developed to quantify the registration accuracy, the VCSEL images, and the associated spot sizes. The experimental results show that beam steering can be implemented to remove distortion in off-axis free-space optical-interconnection systems.

19.
Appl Opt ; 41(29): 6093-103, 2002 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-12389978

RESUMO

The ACTIVE-EYES (adaptive control for thermal imagers via electro-optic elements to yield an enhanced sensor) architecture, an adaptive image-segmentation and processing architecture, based on digital micromirror (DMD) array technology, is described. The concept provides efficient front-end processing of multispectral image data by adaptively segmenting and routing portions of the scene data concurrently to an imager and a spectrometer. The goal is to provide a large reduction in the amount of data required to be sensed in a multispectral imager by means of preprocessing the data to extract the most useful spatial and spectral information during detection. The DMD array provides the flexibility to perform a wide range of spatial and spectral analyses on the scene data. The spatial and spectral processing for different portions of the input scene can be tailored in real time to achieve a variety of preprocessing functions. Since the detected intensity of individual pixels may be controlled, the spatial image can be analyzed with gain varied on a pixel-by-pixel basis to enhance dynamic range. Coarse or fine spectral resolution can be achieved in the spectrometer by use of dynamically controllable or addressable dispersion elements. An experimental prototype, which demonstrated the segmentation between an imager and a grating spectrometer, was demonstrated and shown to achieve programmable pixelated intensity control. An information theoretic analysis of the dynamic-range control aspect was conducted to predict the performance enhancements that might be achieved with this architecture. The results indicate that, with a properly configured algorithm, the concept achieves the greatest relative information recovery from a detected image when the scene is made up of a relatively large area of moderate-dynamic-range pixels and a relatively smaller area of strong pixels that would tend to saturate a conventional sensor.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...