Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chem Commun (Camb) ; 50(32): 4234-7, 2014 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-24633225

RESUMO

This communication describes an in situ method for direct observation and quantitation of dissolved H2 at high pressure with concurrent monitoring and characterization of organic reactions. This capability also allows for direct measurement of k(L)a values and provides insight into reactions that was not previously attainable.


Assuntos
Hidrogênio/análise , Espectroscopia de Ressonância Magnética/métodos , Pressão
2.
J Org Chem ; 78(11): 5768-74, 2013 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-23650960

RESUMO

Serotonin norepinephrine reuptake inhibitor (SNRI) pyrrolidinyl ether 2 was synthesized by employing a dynamic kinetic resolution (DKR) with enantio- and diastereoselective hydogenation on ß-keto-γ-lactam 8 to afford ß-hydroxy-γ-lactam 9 with 96% ee and 94% de. Reduction of 9 and purification via the dibenzoyl-(L)-tartaric acid diastereomeric salt 16 enriched the ee and de to 100%. While screening hydrogenation reaction systems with ruthenium-BINAP catalysts to prepare 9, it was found that adding catalytic HCl and LiCl enabled higher yields. In addition, the rate and equilibrium of the DKR-hydrogenation of 8 to give 9 was studied by online NMR and chiral HPLC, which indicated that one of the enantiomers of 8 was reducing faster to 9 than the equilibration of the stereocenter of 8.


Assuntos
Lactamas/química , Inibidores Seletivos de Recaptação de Serotonina/síntese química , Estrutura Molecular , Oxirredução , Inibidores Seletivos de Recaptação de Serotonina/química
3.
Anal Chem ; 80(9): 3431-7, 2008 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-18341358

RESUMO

In this work, carbon-fiber microelectrode amperometry is used to characterize serotonin exocytosis from murine peritoneal mast cells cocultured with fibroblasts in the presence of Au nanoparticles. In the case of mast cell exposure to 1 nM 28 nm diameter spherical Au nanoparticles, there is a decrease of greater than 30% in the number of successful granule transport and fusion events, greater than 30% increase in the rate of intragranular matrix expansion, and greater than 20% increase in the number of secreted serotonin molecules per granule. These results suggest that nanoparticles interrupt the dense-core biopolymer intragranular matrix and present the potential for systematic studies showing how exocytotic function is influenced by nanoparticle size, shape, and composition.


Assuntos
Eletroquímica/métodos , Ouro/farmacocinética , Mastócitos/metabolismo , Nanopartículas Metálicas , Microeletrodos , Serotonina/metabolismo , Animais , Carbono/química , Exocitose/efeitos dos fármacos , Ouro/farmacologia , Ionóforos/farmacologia , Mastócitos/química , Mastócitos/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Cavidade Peritoneal/citologia , Serotonina/análise , Células Swiss 3T3
4.
Faraday Discuss ; 132: 9-26, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-16833104

RESUMO

Surface-enhanced Raman spectroscopy (SERS) is currently experiencing a renaissance in its development driven by the remarkable discovery of single molecule SERS (SMSERS) and the explosion of interest in nanophotonics and plasmonics. Because excitation of the localized surface plasmon resonance (LSPR) of a nanostructured surface or nanoparticle lies at the heart of SERS, it is important to control all of the factors influencing the LSPR in order to maximize signal strength and ensure reproducibility. These factors include material, size, shape, interparticle spacing, and dielectric environment. All of these factors must be carefully controlled to ensure that the incident laser light maximally excites the LSPR in a reproducible manner. This article describes the use of nanosphere lithography for the fabrication of highly reproducible and robust SERS substrates for both fundamental studies and applications. Atomic layer deposition (ALD) is introduced as a novel fabrication method for dielectric spacers to study the SERS distance dependence and control the nanoscale dielectric environment. Wavelength scanned SER excitation spectroscopy (WS SERES) measurements show that enhancement factors approximately 10(8) are obtainable from NSL-fabricated surfaces and provide new insight into the electromagneticfield enhancement mechanism. Tip-enhanced Raman spectroscopy (TERS) is an extremely promising new development to improve the generality and information content of SERS. A 2D correlation analysis is applied to SMSERS data. Finally, the first in vivo SERS glucose sensing study is presented.


Assuntos
Análise Espectral Raman , Técnicas Biossensoriais/instrumentação , Glucose/análise , Nanopartículas , Nanotubos , Análise Espectral Raman/instrumentação , Análise Espectral Raman/métodos , Ressonância de Plasmônio de Superfície , Propriedades de Superfície
5.
J Phys Chem B ; 109(22): 11279-85, 2005 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-16852377

RESUMO

A detailed wavelength-scanned surface-enhanced Raman excitation spectroscopy (WS SERES) study of benzenethiol adsorbed on Ag nanoparticle arrays, fabricated by nanosphere lithography (NSL), is presented. These NSL-derived Ag nanoparticle array surfaces are both structurally well-characterized and extremely uniform in size. The WS SERES spectra are correlated, both spatially and spectrally, with the corresponding localized surface plasmon resonance (LSPR) spectra of the nanoparticle arrays. The surface-enhanced Raman scattering (SERS) spectra were measured in two excitation wavelength ranges: (1) 425-505 nm, and (2) 610-800 nm, as well as with the 532-nm line from a solid-state diode-pumped laser. The WS SERES spectra have line shapes similar to those of the LSPR spectra. The maximum SERS enhancement factor is shown to occur for excitation wavelengths that are blue-shifted with respect to the LSPR lambda(max) of adsorbate-covered nanoparticle arrays. Three vibrational modes of benzenethiol (1575, 1081, and 1009 cm(-1)) are studied simultaneously on one substrate, and it is demonstrated that the smaller Raman shifted peak shows a maximum enhancement closer to the LSPR lambda(max) than that of a larger Raman shifted peak. This is in agreement with the predictions of the electromagnetic (EM) enhancement mechanism of SERS. Enhancement factors of up to approximately 10(8) are achieved, which is also in good agreement with our previous SERES studies.


Assuntos
Análise Espectral Raman/métodos , Cicloexanos/química , Campos Eletromagnéticos , Microesferas , Nanopartículas , Fenóis/química , Fótons , Análise Espectral Raman/instrumentação , Compostos de Sulfidrila/química , Propriedades de Superfície
6.
Talanta ; 67(3): 438-48, 2005 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-18970187

RESUMO

This paper reviews recent developments in the design and application of two types of optical nanosensor, those based on: (1) localized surface plasmon resonance (LSPR) spectroscopy and (2) surface-enhanced Raman scattering (SERS). The performance of these sensors is discussed in the context of biological and chemical sensing. The first section addresses the LSPR sensors. Arrays of nanotriangles were evaluated and characterized using realistic protein/ligand interactions. Isolated, single nanoparticles were used for chemosensing and performed comparably to the nanoparticle array sensors. In particular, we highlight the effect of nanoparticle morphology on sensing response. The second section details the use of SERS sensors using metal film over nanosphere (MFON) surfaces. The high SERS enhancements and long-term stability of MFONs were exploited in order to develop SERS-based sensors for two important target molecules: a Bacillus anthracis biomarker and glucose in a serum protein mixture.

7.
Inorg Chem ; 43(24): 7735-40, 2004 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-15554638

RESUMO

Eleven new quaternary rare-earth tellurides, CsLnZnTe3 (Ln=La, Pr, Nd, Sm, Gd, Tb, Dy, Ho, Er, Tm, and Y), were prepared from solid-state reactions at 1123 K. These isostructural materials crystallize in the layered KZrCuS3 structure type in the orthorhombic space group Cmcm. The structure is composed of LnTe6 octahedra and ZnTe4 tetrahedra that share edges to form [LnZnTe3] layers. These layers stack perpendicular to [010] and are separated by layers of face- and edge-sharing CsTe8 bicapped trigonal prisms. There are no Te-Te bonds in the structure of these CsLnZnTe3 compounds so the formal oxidation states of Cs/Ln/Zn/Te are 1+/3+/2+/2-. Optical band gaps of 2.13 eV for CsGdZnTe3 and 2.12 eV for CsTbZnTe3 were deduced from single-crystal optical absorption measurements. A first-principles calculation of the density of states and the frequency-dependent optical properties was performed on CsGdZnTe3. The calculated band gap of 2.1 eV is in good agreement with the experimental value. A quadratic fit for the lanthanide contraction of the Ln-Te distance is superior to a linear one if the closed-shell atom is included.

8.
Inorg Chem ; 43(3): 1082-9, 2004 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-14753831

RESUMO

CsLnMnSe(3) (Ln = Sm, Gd, Tb, Dy, Ho, Er, Tm, Yb, Y) and AYbZnQ(3) (A = Rb, Cs; Q = S, Se, Te) have been synthesized from solid-state reactions at temperatures in excess 1173 K. These isostructural materials crystallize in the layered KZrCuS(3) structure type in the orthorhombic space group Cmcm. The structure is composed of LnQ(6) octahedra and MQ(4) tetrahedra that share edges to form [LnMQ(3)] layers. These layers stack perpendicular to [010] and are separated by layers of face- and edge-sharing AQ(8) bicapped trigonal prisms. There are no Q-Q bonds in the structure of the ALnMQ(3) compounds so the formal oxidation states of A/Ln/M/Q are 1+/3+/2+/2-. The CsLnMnSe(3) materials, with the exception of CsYbMnSe(3), are Curie-Weiss paramagnets between 5 and 300 K. The magnetic susceptibility data for CsYbZnS(3), RbYbZnSe(3), and CsYbMSe(3) (M = Mn, Zn) show a weak cusp at approximately 10 K and pronounced differences between field-cooled and zero-field-cooled data. However, CsYbZnSe(3) is not an antiferromagnet because a neutron diffraction study indicates that CsYbZnSe(3) shows neither long-range magnetic ordering nor a phase change between 4 and 295 K. Nor is the compound a spin glass because the transition at 10 K does not depend on ac frequency. The optical band gaps of the (010) and (001) crystal faces for CsYbMnSe(3) are 1.60 and 1.59 eV, respectively; the optical band of the (010) crystal faces for CsYbZnS(3) and RbYbZnSe(3) are 2.61 and 2.07 eV, respectively.

9.
Inorg Chem ; 42(13): 4109-16, 2003 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-12817969

RESUMO

CsLnCdSe(3) (Ln = Ce, Pr, Sm, Gd, Tb, Dy, Y) and CsLnHgSe(3) (Ln = La, Ce, Pr, Nd, Sm, Gd, Y) have been synthesized at 1123 K. These isostructural materials crystallize in the layered KZrCuS(3) structure type in the orthorhombic space group Cmcm and are group X extensions of the previously characterized Zn compounds. The structure is composed of two-dimensional [LnMSe(3)] layers that stack perpendicular to [010] and are separated by layers of face- and edge-sharing CsSe(8) bicapped trigonal prisms. Because there are no Se-Se bonds in the structure of CsLnMSe(3) (M = Zn, Cd, Hg), the formal oxidation states of Cs/Ln/M/Se are 1+/3+/2+/2-. CsSmHgSe(3) does not adhere to the Curie-Weiss law, whereas CsCeHgSe(3) and CsGdHgSe(3) are Curie-Weiss paramagnets with micro (eff) values of 2.77 and 7.90 micro (B), corresponding well with the theoretical values of 2.54 and 7.94 micro (B) for Ce(3+) and Gd(3+), respectively. Single-crystal optical absorption measurements were performed with polarized light perpendicular to the (010) and (001) crystal faces of these materials. The band gaps of the (010) crystal faces range from 1.94 eV (CsCeHgSe(3)) to 2.58 eV (CsYCdSe(3)) whereas those of the (001) crystal faces span the range 2.37 eV (CsSmHgSe(3)) to 2.54 eV (CsYCdSe(3) and CsYHgSe(3)). The largest band gap variation between crystal faces is 0.06 eV for CsYCdSe(3). Theoretical calculations for CsYMSe(3) indicate that these materials are direct band gap semiconductors whose colors and optical band gaps are dependent upon the orbitals of Y, M, and Se.

10.
Inorg Chem ; 41(5): 1199-204, 2002 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-11874356

RESUMO

Eight new quaternary selenides CsSmZnSe(3), CsTbZnSe(3), CsDyZnSe(3), CsHoZnSe(3,) CsErZnSe(3), CsTmZnSe(3), CsYbZnSe(3), and CsYZnSe(3) have been synthesized with the use of high-temperature solid-state experimental methods. These compounds are isostructural with KZrCuS(3), crystallizing with four formula units in the orthorhombic space group Cmcm. The structure of these CsLnZnSe(3) compounds is composed of [LnZnSe(3)(-)] layers separated by Cs atoms. The Ln atom is octahedrally coordinated by six Se atoms, the Zn atom is tetrahedrally coordinated by four Se atoms, and the Cs atom is coordinated by a bicapped trigonal prism of eight Se atoms. Because there are no Se-Se bonds in the structure, the oxidation state of Cs is 1+, that of Ln is 3+, and that of Zn is 2+. CsYbZnSe(3) exhibits an antiferromagnetic transition at 11 K, whereas CsSmZnSe(3) does not follow a Curie-Weiss law. The remaining rare-earth compounds are paramagnetic, and the calculated effective magnetic moments of the rare-earth ions agree well with their theoretical values. Optical absorption data on face-indexed single crystals of CsSmZnSe(3), CsErZnSe(3), CsYbZnSe(3), and CsYZnSe(3) demonstrate that the optical band gap changes by more than 0.75 eV with the composition and by as much as 0.20 eV with the crystal orientation. The optical band gaps range from 2.63 eV (CsSmZnSe(3), CsErZnSe(3)) to 1.93 eV (CsYbZnSe(3)) for the (010) crystal face and 2.56 eV (CsErZnSe(3)) to 1.88 eV (CsYbZnSe(3)) for the (001) crystal face. The difference in the optical band gap of the (010) face vs the (001) face varies from +0.05 eV (CsYbZnSe(3)) to +0.20 eV (CsSmZnSe(3)).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...