Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Langmuir ; 39(23): 8100-8108, 2023 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-37235552

RESUMO

Phenylboronic acids (BAs) are important synthetic receptors that bind reversibly to cis-diols enabling their use in molecular sensing. When conjugated to magnetic iron oxide nanoparticles, BAs have potential for application in separations and enrichment. Realizing this will require a new understanding of their inherent binding modes and measurement of their binding capacity and their stability in/extractability from complex environments. In this work, 3-aminophenylboronic acid was functionalized to superparamagnetic iron oxide nanoparticles (MNPs, core diameter 8.9 nm) to provide stable aqueous suspensions of functionalized particles (BA-MNPs). The progress of sugar binding and its impact on BA-MNP colloidal stability were monitored through the pH-dependence of hydrodynamic size and zeta potential during incubation with a range of saccharides. This provided the first direct observation of boronate ionization pKa in grafted BA, which in the absence of sugar shifted to a slightly more basic pH than free BA. On exposure to sugar solutions under MNP-limiting conditions, pKa moved progressively to lower pH as maximum capacity was gradually attained. The pKa shift is shown to be greater for sugars with greater BA binding affinity, and on-particle sugar exchange effects were inferred. Colloidal dispersion of BA-MNPs after binding was shown for all sugars at all pHs studied, which enabled facile magnetic extraction of glucose from agarose and cultured extracellular matrix expanded in serum-free media. Bound glucose, quantified following magnetophoretic capture, was found to be proportional to the solution glucose content under glucose-limiting conditions expected for the application. The implications for the development of MNP-immobilized ligands for selective magnetic biomarker capture and quantitation from the extracellular environment are discussed.


Assuntos
Nanopartículas de Magnetita , Açúcares , Carboidratos , Glucose
2.
J Colloid Interface Sci ; 611: 533-544, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34971964

RESUMO

Hydrogels loaded with magnetic iron oxide nanoparticles that can be patterned and which controllably induce hyperthermic responses on AC-field stimulation are of interest as functional components of next-generation biomaterials. Formation of nanocomposite hydrogels is known to eliminate any Brownian contribution to hyperthermic response (reducing stimulated heating) while the Néel contribution can also be suppressed by inter-particle dipolar interactions arising from aggregation induced before or during gelation. We describe the ability of graphene oxide (GO) flakes to restore the hyperthermic efficiency of soft printable hydrogels formed using Pluronics F127 and PEGylated magnetic nanoflowers. Here, by varying the amount of GO in mixed nanocomposite suspensions and gels, we demonstrate GO-content dependent recovery of hyperthemic response in gels. This is due to progressively reduced inter-nanoflower interactions mediated by GO, which largely restore the dispersed-state Néel contribution to heating. We suggest that preferential association of GO with the hydrophobic F127 blocks increases the preponderance of cohesive interactions between the hydrophilic blocks and the PEGylated nanoflowers, promoting dispersion of the latter. Finally we demonstrate extrusion-based 3D printing with excellent print fidelity of the magnetically-responsive nanocomposites, for which the inclusion of GO provides significant improvement in the spatially-localized open-coil heating response, rendering the prints viable components for future cell stimulation and delivery applications.


Assuntos
Grafite , Hipertermia Induzida , Nanocompostos , Hidrogéis , Fenômenos Magnéticos , Nanogéis
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...