Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Plant Sci ; 14: 1213454, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37615024

RESUMO

Maintenance of optimal leaf tissue humidity is important for plant productivity and food security. Leaf humidity is influenced by soil and atmospheric water availability, by transpiration and by the coordination of water flux across cell membranes throughout the plant. Flux of water and solutes across plant cell membranes is influenced by the function of aquaporin proteins. Plants have numerous aquaporin proteins required for a multitude of physiological roles in various plant tissues and the membrane flux contribution of each aquaporin can be regulated by changes in protein abundance, gating, localisation, post-translational modifications, protein:protein interactions and aquaporin stoichiometry. Resolving which aquaporins are candidates for influencing leaf humidity and determining how their regulation impacts changes in leaf cell solute flux and leaf cavity humidity is challenging. This challenge involves resolving the dynamics of the cell membrane aquaporin abundance, aquaporin sub-cellular localisation and location-specific post-translational regulation of aquaporins in membranes of leaf cells during plant responses to changes in water availability and determining the influence of cell signalling on aquaporin permeability to a range of relevant solutes, as well as determining aquaporin influence on cell signalling. Here we review recent developments, current challenges and suggest open opportunities for assessing the role of aquaporins in leaf substomatal cavity humidity regulation.

2.
Front Plant Sci ; 14: 1078220, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36760647

RESUMO

Introduction: Engineering membrane transporters to achieve desired functionality is reliant on availability of experimental data informing structure-function relationships and intelligent design. Plant aquaporin (AQP) isoforms are capable of transporting diverse substrates such as signaling molecules, nutrients, metalloids, and gases, as well as water. AQPs can act as multifunctional channels and their transport function is reliant on many factors, with few studies having assessed transport function of specific isoforms for multiple substrates. Methods: High-throughput yeast assays were developed to screen for transport function of plant AQPs, providing a platform for fast data generation and cataloguing of substrate transport profiles. We applied our high-throughput growth-based yeast assays to screen all 13 Arabidopsis PIPs (AtPIPs) for transport of water and several neutral solutes: hydrogen peroxide (H2O2), boric acid (BA), and urea. Sodium (Na+) transport was assessed using elemental analysis techniques. Results: All AtPIPs facilitated water and H2O2 transport, although their growth phenotypes varied, and none were candidates for urea transport. For BA and Na+ transport, AtPIP2;2 and AtPIP2;7 were the top candidates, with yeast expressing these isoforms having the most pronounced toxicity response to BA exposure and accumulating the highest amounts of Na+. Linking putative AtPIP isoform substrate transport profiles with phylogenetics and gene expression data, enabled us to align possible substrate preferences with known and hypothesized biological roles of AtPIPs. Discussion: This testing framework enables efficient cataloguing of putative transport functionality of diverse AQPs at a scale that can help accelerate our understanding of AQP biology through big data approaches (e.g. association studies). The principles of the individual assays could be further adapted to test additional substrates. Data generated from this framework could inform future testing of AQP physiological roles, and address knowledge gaps in structure-function relationships to improve engineering efforts.

3.
New Phytol ; 238(1): 33-54, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36683439

RESUMO

Plants draw up their surrounding soil solution to gain water and nutrients required for growth, development and reproduction. Obtaining adequate water and nutrients involves taking up both desired and undesired elements from the soil solution and separating resources from waste. Desirable and undesirable elements in the soil solution can share similar chemical properties, such as size and charge. Plants use membrane separation mechanisms to distinguish between different molecules that have similar chemical properties. Membrane separation enables distribution or retention of resources and efflux or compartmentation of waste. Plants use specialised membrane separation mechanisms to adapt to challenging soil solution compositions and distinguish between resources and waste. Coordination and regulation of these mechanisms between different tissues, cell types and subcellular membranes supports plant nutrition, environmental stress tolerance and energy management. This review considers membrane separation mechanisms in plants that contribute to specialised separation processes and highlights mechanisms of interest for engineering plants with enhanced performance in challenging conditions and for inspiring the development of novel industrial membrane separation technologies. Knowledge gained from studying plant membrane separation mechanisms can be applied to developing precision separation technologies. Separation technologies are needed for harvesting resources from industrial wastes and transitioning to a circular green economy.


Assuntos
Plantas , Solo , Plantas/metabolismo
4.
Elife ; 102021 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-34842138

RESUMO

A fundamental limitation of photosynthetic carbon fixation is the availability of CO2. In C4 plants, primary carboxylation occurs in mesophyll cytosol, and little is known about the role of CO2 diffusion in facilitating C4 photosynthesis. We have examined the expression, localization, and functional role of selected plasma membrane intrinsic aquaporins (PIPs) from Setaria italica (foxtail millet) and discovered that SiPIP2;7 is CO2-permeable. When ectopically expressed in mesophyll cells of Setaria viridis (green foxtail), SiPIP2;7 was localized to the plasma membrane and caused no marked changes in leaf biochemistry. Gas exchange and C18O16O discrimination measurements revealed that targeted expression of SiPIP2;7 enhanced the conductance to CO2 diffusion from the intercellular airspace to the mesophyll cytosol. Our results demonstrate that mesophyll conductance limits C4 photosynthesis at low pCO2 and that SiPIP2;7 is a functional CO2 permeable aquaporin that can improve CO2 diffusion at the airspace/mesophyll interface and enhance C4 photosynthesis.


Assuntos
Aquaporinas/metabolismo , Dióxido de Carbono/química , Fotossíntese/fisiologia , Setaria (Planta)/metabolismo , Difusão , Células do Mesofilo/fisiologia , Folhas de Planta/metabolismo
5.
Biochim Biophys Acta Biomembr ; 1863(10): 183661, 2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-34058166

RESUMO

Aquaporins are water and solute channel proteins found throughout the kingdoms of life. Ion-conducting aquaporins (icAQPs) have been identified in both plants and animals indicating that this function may be conserved through evolution. In higher plants icAQP function has been demonstrated for isoforms from two of five aquaporin subfamilies indicating that this function could have existed before the divergence of higher plants from green algae. Here a PIP-like aquaporin from the charophytic alga Klebsormidium nitens was functionally characterised in Xenopus laevis oocytes and its expression was found to induce water and ion conductance.


Assuntos
Aquaporinas/metabolismo , Alga Marinha/metabolismo , Água/metabolismo , Animais , Transporte de Íons , Xenopus laevis
6.
Annu Rev Plant Biol ; 72: 703-736, 2021 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-33577345

RESUMO

Aquaporins function as water and neutral solute channels, signaling hubs, disease virulence factors, and metabolon components. We consider plant aquaporins that transport ions compared to some animal counterparts. These are candidates for important, as yet unidentified, cation and anion channels in plasma, tonoplast, and symbiotic membranes. For those individual isoforms that transport ions, water, and gases, the permeability spans 12 orders of magnitude. This requires tight regulation of selectivity via protein interactions and posttranslational modifications. A phosphorylation-dependent switch between ion and water permeation in AtPIP2;1 might be explained by coupling between the gates of the four monomer water channels and the central pore of the tetramer. We consider the potential for coupling between ion and water fluxes that could form the basis of an electroosmotic transducer. A grand challenge in understanding the roles of ion transporting aquaporins is their multifunctional modes that are dependent on location, stress, time, and development.


Assuntos
Aquagliceroporinas , Aquaporinas , Animais , Aquaporinas/metabolismo , Transporte de Íons , Plantas/metabolismo , Água/metabolismo
7.
Int J Mol Sci ; 21(19)2020 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-32992595

RESUMO

Some plasma membrane intrinsic protein (PIP) aquaporins can facilitate ion transport. Here we report that one of the 12 barley PIPs (PIP1 and PIP2) tested, HvPIP2;8, facilitated cation transport when expressed in Xenopus laevis oocytes. HvPIP2;8-associated ion currents were detected with Na+ and K+, but not Cs+, Rb+, or Li+, and was inhibited by Ba2+, Ca2+, and Cd2+ and to a lesser extent Mg2+, which also interacted with Ca2+. Currents were reduced in the presence of K+, Cs+, Rb+, or Li+ relative to Na+ alone. Five HvPIP1 isoforms co-expressed with HvPIP2;8 inhibited the ion conductance relative to HvPIP2;8 alone but HvPIP1;3 and HvPIP1;4 with HvPIP2;8 maintained the ion conductance at a lower level. HvPIP2;8 water permeability was similar to that of a C-terminal phosphorylation mimic mutant HvPIP2;8 S285D, but HvPIP2;8 S285D showed a negative linear correlation between water permeability and ion conductance that was modified by a kinase inhibitor treatment. HvPIP2;8 transcript abundance increased in barley shoot tissues following salt treatments in a salt-tolerant cultivar Haruna-Nijo, but not in salt-sensitive I743. There is potential for HvPIP2;8 to be involved in barley salt-stress responses, and HvPIP2;8 could facilitate both water and Na+/K+ transport activity, depending on the phosphorylation status.


Assuntos
Aquaporinas/metabolismo , Cálcio/metabolismo , Hordeum/metabolismo , Transporte de Íons , Oócitos/metabolismo , Proteínas de Plantas/metabolismo , Brotos de Planta/metabolismo , Potássio/metabolismo , Sódio/metabolismo , Animais , Aquaporinas/genética , Cátions/metabolismo , Membrana Celular/metabolismo , Células Cultivadas , Feminino , Regulação da Expressão Gênica de Plantas , Hordeum/genética , Técnicas de Patch-Clamp , Fosforilação , Proteínas de Plantas/genética , Brotos de Planta/genética , RNA Complementar/administração & dosagem , Água/metabolismo , Xenopus laevis
8.
Plant Cell Environ ; 43(10): 2428-2442, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32678928

RESUMO

The phosphorylation state of two serine residues within the C-terminal domain of AtPIP2;1 (S280, S283) regulates its plasma membrane localization in response to salt and osmotic stress. Here, we investigated whether the phosphorylation state of S280 and S283 also influence AtPIP2;1 facilitated water and cation transport. A series of single and double S280 and S283 phosphomimic and phosphonull AtPIP2;1 mutants were tested in heterologous systems. In Xenopus laevis oocytes, phosphomimic mutants AtPIP2;1 S280D, S283D, and S280D/S283D had significantly greater ion conductance for Na+ and K+ , whereas the S280A single phosphonull mutant had greater water permeability. We observed a phosphorylation-dependent inverse relationship between AtPIP2;1 water and ion transport with a 10-fold change in both. The results revealed that phosphorylation of S280 and S283 influences the preferential facilitation of ion or water transport by AtPIP2;1. The results also hint that other regulatory sites play roles that are yet to be elucidated. Expression of the AtPIP2;1 phosphorylation mutants in Saccharomyces cerevisiae confirmed that phosphorylation influences plasma membrane localization, and revealed higher Na+ accumulation for S280A and S283D mutants. Collectively, the results show that phosphorylation in the C-terminal domain of AtPIP2;1 influences its subcellular localization and cation transport capacity.


Assuntos
Aquaporinas/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Canais Iônicos/metabolismo , Animais , Animais Geneticamente Modificados , Aquaporinas/fisiologia , Proteínas de Arabidopsis/fisiologia , Oócitos , Fosforilação , Água/metabolismo , Xenopus laevis
9.
J Exp Bot ; 71(6): 1763-1773, 2020 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-32109278

RESUMO

Seeds are the typical dispersal and propagation units of angiosperms and gymnosperms. Water movement into and out of seeds plays a crucial role from the point of fertilization through to imbibition and seed germination. A class of membrane intrinsic proteins called aquaporins (AQPs) assist with the movement of water and other solutes within seeds. These highly diverse and abundant proteins are associated with different processes in the development, longevity, imbibition, and germination of seed. However, there are many AQPs encoded in a plant's genome and it is not yet clear how, when, or which AQPs are involved in critical stages of seed biology. Here we review the literature to examine the evidence for AQP involvement in seeds and analyse Arabidopsis seed-related transcriptomic data to assess which AQPs are likely to be important in seed water relations and explore additional roles for AQPs in seed biology.


Assuntos
Aquaporinas , Regulação da Expressão Gênica de Plantas , Aquaporinas/genética , Aquaporinas/metabolismo , Biologia , Germinação , Sementes/genética , Sementes/metabolismo
10.
Int J Mol Sci ; 18(11)2017 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-29099773

RESUMO

Aquaporins (AQPs) are known to facilitate water and solute fluxes across barrier membranes. An increasing number of AQPs are being found to serve as ion channels. Ion and water permeability of selected plant and animal AQPs (plant Arabidopsis thaliana AtPIP2;1, AtPIP2;2, AtPIP2;7, human Homo sapiens HsAQP1, rat Rattus norvegicus RnAQP4, RnAQP5, and fly Drosophilamelanogaster DmBIB) were expressed in Xenopus oocytes and examined in chelator-buffered salines to evaluate the effects of divalent cations (Ca2+, Mg2+, Ba2+ and Cd2+) on ionic conductances. AtPIP2;1, AtPIP2;2, HsAQP1 and DmBIB expressing oocytes had ionic conductances, and showed differential sensitivity to block by external Ca2+. The order of potency of inhibition by Ca2+ was AtPIP2;2 > AtPIP2;1 > DmBIB > HsAQP1. Blockage of the AQP cation channels by Ba2+ and Cd2+ caused voltage-sensitive outward rectification. The channels with the highest sensitivity to Ca2+ (AtPIP2;1 and AtPIP2;2) showed a distinctive relief of the Ca2+ block by co-application of excess Ba2+, suggesting that divalent ions act at the same site. Recognizing the regulatory role of divalent cations may enable the discovery of other classes of AQP ion channels, and facilitate the development of tools for modulating AQP ion channels. Modulators of AQPs have potential value for diverse applications including improving salinity tolerance in plants, controlling vector-borne diseases, and intervening in serious clinical conditions involving AQPs, such as cancer metastasis, cardiovascular or renal dysfunction.


Assuntos
Aquaporinas/metabolismo , Cátions Bivalentes/metabolismo , Animais , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Bário/metabolismo , Cádmio/metabolismo , Cálcio/metabolismo , Drosophila , Humanos , Transporte de Íons , Magnésio/metabolismo , Xenopus
11.
Front Plant Sci ; 7: 1815, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-28018372

RESUMO

Setaria viridis is a C4 grass used as a model for bioenergy feedstocks. The elongating internodes in developing S. viridis stems grow from an intercalary meristem at the base, and progress acropetally toward fully expanded cells that store sugar. During stem development and maturation, water flow is a driver of cell expansion and sugar delivery. As aquaporin proteins are implicated in regulating water flow, we analyzed elongating and mature internode transcriptomes to identify putative aquaporin encoding genes that had particularly high transcript levels during the distinct stages of internode cell expansion and maturation. We observed that SvPIP2;1 was highly expressed in internode regions undergoing cell expansion, and SvNIP2;2 was highly expressed in mature sugar accumulating regions. Gene co-expression analysis revealed SvNIP2;2 expression was highly correlated with the expression of five putative sugar transporters expressed in the S. viridis internode. To explore the function of the proteins encoded by SvPIP2;1 and SvNIP2;2, we expressed them in Xenopus laevis oocytes and tested their permeability to water. SvPIP2;1 and SvNIP2;2 functioned as water channels in X. laevis oocytes and their permeability was gated by pH. Our results indicate that SvPIP2;1 may function as a water channel in developing stems undergoing cell expansion and SvNIP2;2 is a candidate for retrieving water and possibly a yet to be determined solute from mature internodes. Future research will investigate whether changing the function of these proteins influences stem growth and sugar yield in S. viridis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...