Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ecol Evol ; 13(1): e9712, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36620417

RESUMO

Bacteriophage (phage) therapy in combination with antibiotic treatment serves as a potential strategy to overcome the continued rise in antibiotic resistance across bacterial pathogens. Understanding the impacts of evolutionary and ecological processes to the phage-antibiotic-resistance dynamic could advance the development of such combinatorial therapy. We tested whether the acquisition of mutations conferring phage resistance may have antagonistically pleiotropic consequences for antibiotic resistance. First, to determine the robustness of phage resistance across different phage strains, we infected resistant Escherichia coli cultures with phage that were not previously encountered. We found that phage-resistant E. coli mutants that gained resistance to a single phage strain maintain resistance to other phages with overlapping adsorption methods. Mutations underlying the phage-resistant phenotype affects lipopolysaccharide (LPS) structure and/or synthesis. Because LPS is implicated in both phage infection and antibiotic response, we then determined whether phage-resistant trade-offs exist when challenged with different classes of antibiotics. We found that only 1 out of the 4 phage-resistant E. coli mutants yielded trade-offs between phage and antibiotic resistance. Surprisingly, when challenged with novobiocin, we uncovered evidence of synergistic pleiotropy for some mutants allowing for greater antibiotic resistance, even though antibiotic resistance was never selected for. Our results highlight the importance of understanding the role of selective pressures and pleiotropic interactions in the bacterial response to phage-antibiotic combinatorial therapy.

2.
Mol Biol Evol ; 34(12): 3243-3253, 2017 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-29029274

RESUMO

Convergent evolution has been demonstrated across all levels of biological organization, from parallel nucleotide substitutions to convergent evolution of complex phenotypes, but whether instances of convergence are the result of selection repeatedly finding the same optimal solution to a recurring problem or are the product of mutational biases remains unsettled. We generated 20 replicate lineages allowed to fix a single mutation from each of four bacteriophage genotypes under identical selective regimes to test for parallel changes within and across genotypes at the levels of mutational effect distributions and gene, protein, amino acid, and nucleotide changes. All four genotypes shared a distribution of beneficial mutational effects best approximated by a distribution with a finite upper bound. Parallel adaptation was high at the protein, gene, amino acid, and nucleotide levels, both within and among phage genotypes, with the most common first-step mutation in each background fixing on an average in 7 of 20 replicates and half of the substitutions in two of the four genotypes occurring at shared sites. Remarkably, the mutation of largest beneficial effect that fixed for each genotype was never the most common, as would be expected if parallelism were driven by selection. In fact, the mutation of smallest benefit for each genotype fixed in a total of 7 of 80 lineages, equally as often as the mutation of largest benefit, leading us to conclude that adaptation was largely mutation-driven, such that mutational biases led to frequent parallel fixation of mutations of suboptimal effect.


Assuntos
Adaptação Fisiológica/genética , Bacteriófagos/genética , Seleção Genética/genética , Evolução Biológica , Evolução Molecular Direcionada/métodos , Evolução Molecular , Genótipo , Mutação , Fenótipo
3.
Genetics ; 202(1): 285-95, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26564159

RESUMO

Adaptive evolution progresses as a series of steps toward a multidimensional phenotypic optimum, and organismal or environmental complexity determines the number of phenotypic dimensions, or traits, under selection. Populations evolving in complex environments may experience costs of complexity such that improvement in one or more traits is impeded by selection on others. We compared the fitness effects of the first fixed mutations for populations of single-stranded DNA bacteriophage evolving under simple selection for growth rate to those of populations evolving under more complex selection for growth rate as well as capsid stability. We detected a cost of complexity manifested as a smaller growth rate improvement for mutations fixed under complex conditions. We found that, despite imposing a cost for growth rate improvement, strong complex selection resulted in the greatest overall fitness improvement, even for single mutations. Under weaker secondary selective pressures, tradeoffs between growth rate and stability were pervasive, but strong selection on the secondary trait resulted largely in mutations beneficial to both traits. Strength of selection therefore determined the nature of pleiotropy governing observed trait evolution, and strong positive selection forced populations to find mutations that improved multiple traits, thereby overriding costs incurred as a result of a more complex selective environment. The costs of complexity, however, remained substantial when considering the effects on a single trait in the context of selection on multiple traits.


Assuntos
Adaptação Biológica , Evolução Biológica , Pleiotropia Genética , Myoviridae/genética , Evolução Molecular Direcionada , Mutação
4.
PLoS Genet ; 10(10): e1004611, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25275498

RESUMO

The genetic architecture of many phenotypic traits is such that genes often contribute to multiple traits, and mutations in these genes can therefore affect multiple phenotypes. These pleiotropic interactions often manifest as tradeoffs between traits where improvement in one property entails a cost in another. The life cycles of many pathogens include periods of growth within a host punctuated with transmission events, such as passage through a digestive tract or a passive stage of exposure in the environment. Populations exposed to such fluctuating selective pressures are expected to acquire mutations showing tradeoffs between reproduction within and survival outside of a host. We selected for individual mutations under fluctuating selective pressures for a ssDNA microvirid bacteriophage by alternating selection for increased growth rate with selection on biophysical properties of the phage capsid in high-temperature or low-pH conditions. Surprisingly, none of the seven unique mutations identified showed a pleiotropic cost; they all improved both growth rate and pH or temperature stability, suggesting that single mutations even in a simple genetic system can simultaneously improve two distinct traits. Selection on growth rate alone revealed tradeoffs, but some mutations still benefited both traits. Tradeoffs were therefore prevalent when selection acted on a single trait, but payoffs resulted when multiple traits were selected for simultaneously. We employed a molecular-dynamics simulation method to determine the mechanisms underlying beneficial effects for three heat-shock mutations. All three mutations significantly enhanced the affinities of protein-protein interfacial bindings, thereby improving capsid stability. The ancestral residues at the mutation sites did not contribute to protein-protein interfacial binding, indicating that these sites acquired a new function. Computational models, such as those used here, may be used in future work not only as predictive tools for mutational effects on protein stability but, ultimately, for evolution.


Assuntos
Adaptação Fisiológica/genética , Microvirus/fisiologia , Seleção Genética , Capsídeo/metabolismo , Aptidão Genética , Resposta ao Choque Térmico/genética , Concentração de Íons de Hidrogênio , Microvirus/química , Microvirus/genética , Microvirus/crescimento & desenvolvimento , Mutação , Temperatura , Proteínas Virais/genética , Proteínas Virais/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...