Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
J Cell Biol ; 213(3): 371-83, 2016 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-27161398

RESUMO

Integrin-dependent adhesions are mechanosensitive structures in which talin mediates a linkage to actin filaments either directly or indirectly by recruiting vinculin. Here, we report the development and validation of a talin tension sensor. We find that talin in focal adhesions is under tension, which is higher in peripheral than central adhesions. Tension on talin is increased by vinculin and depends mainly on actin-binding site 2 (ABS2) within the middle of the rod domain, rather than ABS3 at the far C terminus. Unlike vinculin, talin is under lower tension on soft substrates. The difference between central and peripheral adhesions requires ABS3 but not vinculin or ABS2. However, differential stiffness sensing by talin requires ABS2 but not vinculin or ABS3. These results indicate that central versus peripheral adhesions must be organized and regulated differently, and that ABS2 and ABS3 have distinct functions in spatial variations and stiffness sensing. Overall, these results shed new light on talin function and constrain models for cellular mechanosensing.


Assuntos
Mecanotransdução Celular , Talina/fisiologia , Citoesqueleto de Actina/metabolismo , Animais , Sítios de Ligação , Transferência Ressonante de Energia de Fluorescência , Adesões Focais , Camundongos , Modelos Biológicos , Células NIH 3T3 , Talina/metabolismo , Vinculina/metabolismo , Vinculina/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...