Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Acta Crystallogr D Biol Crystallogr ; 71(Pt 11): 2344-53, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26527149

RESUMO

The three-dimensional structures of the native enzyme and the FMN complex of the overexpressed form of the oxygenating component of the type II Baeyer-Villiger 3,6-diketocamphane monooxygenase have been determined to 1.9 Å resolution. The structure of this dimeric FMN-dependent enzyme, which is encoded on the large CAM plasmid of Pseudomonas putida, has been solved by a combination of multiple anomalous dispersion from a bromine crystal soak and molecular replacement using a bacterial luciferase model. The orientation of the isoalloxazine ring of the FMN cofactor in the active site of this TIM-barrel fold enzyme differs significantly from that previously observed in enzymes of the bacterial luciferase-like superfamily. The Ala77 residue is in a cis conformation and forms a ß-bulge at the C-terminus of ß-strand 3, which is a feature observed in many proteins of this superfamily.


Assuntos
Proteínas de Bactérias/química , Oxigenases/química , Pseudomonas putida/química , Sequência de Aminoácidos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Domínio Catalítico , Cristalografia por Raios X , FMN Redutase/metabolismo , Mononucleotídeo de Flavina/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Oxigenases/genética , Oxigenases/metabolismo , Plasmídeos/genética , Conformação Proteica , Dobramento de Proteína , Pseudomonas putida/genética , Pseudomonas putida/metabolismo , Alinhamento de Sequência
3.
PLoS Pathog ; 8(1): e1002500, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22291596

RESUMO

Although there have been great advances in our understanding of the bacterial cytoskeleton, major gaps remain in our knowledge of its importance to virulence. In this study we have explored the contribution of the bacterial cytoskeleton to the ability of Salmonella to express and assemble virulence factors and cause disease. The bacterial actin-like protein MreB polymerises into helical filaments and interacts with other cytoskeletal elements including MreC to control cell-shape. As mreB appears to be an essential gene, we have constructed a viable ΔmreC depletion mutant in Salmonella. Using a broad range of independent biochemical, fluorescence and phenotypic screens we provide evidence that the Salmonella pathogenicity island-1 type three secretion system (SPI1-T3SS) and flagella systems are down-regulated in the absence of MreC. In contrast the SPI-2 T3SS appears to remain functional. The phenotypes have been further validated using a chemical genetic approach to disrupt the functionality of MreB. Although the fitness of ΔmreC is reduced in vivo, we observed that this defect does not completely abrogate the ability of Salmonella to cause disease systemically. By forcing on expression of flagella and SPI-1 T3SS in trans with the master regulators FlhDC and HilA, it is clear that the cytoskeleton is dispensable for the assembly of these structures but essential for their expression. As two-component systems are involved in sensing and adapting to environmental and cell surface signals, we have constructed and screened a panel of such mutants and identified the sensor kinase RcsC as a key phenotypic regulator in ΔmreC. Further genetic analysis revealed the importance of the Rcs two-component system in modulating the expression of these virulence factors. Collectively, these results suggest that expression of virulence genes might be directly coordinated with cytoskeletal integrity, and this regulation is mediated by the two-component system sensor kinase RcsC.


Assuntos
Sistemas de Secreção Bacterianos/fisiologia , Citoesqueleto/metabolismo , Infecções por Salmonella/metabolismo , Salmonella/metabolismo , Salmonella/patogenicidade , Fatores de Virulência/metabolismo , Animais , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Citoesqueleto/genética , Feminino , Flagelos/genética , Flagelos/metabolismo , Deleção de Genes , Ilhas Genômicas/fisiologia , Camundongos , Salmonella/genética , Infecções por Salmonella/genética , Transativadores/genética , Transativadores/metabolismo , Fatores de Virulência/genética
4.
Proc Natl Acad Sci U S A ; 108(35): 14449-54, 2011 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-21844371

RESUMO

The WAVE regulatory complex (WRC) is a critical element in the control of actin polymerization at the eukaryotic cell membrane, but how WRC is activated remains uncertain. While Rho GTPase Rac1 can bind and activate WRC in vitro, this interaction is of low affinity, suggesting other factors may be important. By reconstituting WAVE-dependent actin assembly on membrane-coated beads in mammalian cell extracts, we found that Rac1 was not sufficient to engender bead motility, and we uncovered a key requirement for Arf GTPases. In vitro, Rac1 and Arf1 were individually able to bind weakly to recombinant WRC and activate it, but when both GTPases were bound at the membrane, recruitment and concomitant activation of WRC were dramatically enhanced. This cooperativity between the two GTPases was sufficient to induce WAVE-dependent bead motility in cell extracts. Our findings suggest that Arf GTPases may be central components in WAVE signalling, acting directly, alongside Rac1.


Assuntos
Fator 1 de Ribosilação do ADP/fisiologia , Actinas/química , Família de Proteínas da Síndrome de Wiskott-Aldrich/fisiologia , Proteínas rac1 de Ligação ao GTP/fisiologia , Animais , Humanos , Lipossomos/química , Transdução de Sinais
5.
J Bacteriol ; 191(23): 7253-9, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19783624

RESUMO

Bacterial species can communicate by producing and sensing small autoinducer molecules by a process known as quorum sensing. Salmonella enterica produces autoinducer 2 (AI-2) via the luxS synthase gene, which is used by some bacterial pathogens to coordinate virulence gene expression with population density. We investigated whether the luxS gene might affect the ability of Salmonella enterica serovar Typhimurium to invade epithelial cells. No differences were found between the wild-type strain of S. Typhimurium, SL1344, and its isogenic luxS mutant with respect to the number and morphology of the membrane ruffles induced or their ability to invade epithelial cells. The dynamics of the ruffling process were also similar in the wild-type strain (SL1344) and the luxS mutant. Furthermore, comparing the Salmonella pathogenicity island 1 (SPI-1) type 3 secretion profiles of wild-type SL1344 and the luxS mutant by Western blotting and measuring the expression of a single-copy green fluorescent protein fusion to the prgH (an essential SPI-1 gene) promoter indicated that SPI-1 expression and activity are similar in the wild-type SL1344 and luxS mutant. Genetic deletion of luxS did not alter the virulence of S. Typhimurium in the mouse model, and therefore, it appears that luxS does not play a significant role in regulating invasion of Salmonella in vitro or in vivo.


Assuntos
Proteínas de Bactérias/fisiologia , Liases de Carbono-Enxofre/fisiologia , Células Epiteliais/microbiologia , Percepção de Quorum/fisiologia , Salmonella enterica/metabolismo , Actinas/metabolismo , Animais , Proteínas de Bactérias/genética , Liases de Carbono-Enxofre/genética , Linhagem Celular , Cães , Feminino , Citometria de Fluxo , Células HeLa , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Microscopia de Contraste de Fase , Percepção de Quorum/genética , Salmonella enterica/genética
6.
Curr Opin Microbiol ; 12(1): 117-24, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19157959

RESUMO

Salmonella pathogenesis relies upon the delivery of over thirty specialised effector proteins into the host cell via two distinct type III secretion systems. These effectors act in concert to subvert the host cell cytoskeleton, signal transduction pathways, membrane trafficking and pro-inflammatory responses. This allows Salmonella to invade non-phagocytic epithelial cells, establish and maintain an intracellular replicative niche and, in some cases, disseminate to cause systemic disease. This review focuses on the actions of the effectors on their host cell targets during each stage of Salmonella infection.


Assuntos
Proteínas de Bactérias/metabolismo , Células Epiteliais/microbiologia , Salmonella/patogenicidade , Fatores de Virulência/metabolismo , Animais , Humanos
7.
PLoS Pathog ; 4(10): e1000191, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-18974829

RESUMO

Enterohemorrhagic Escherichia coli (EHEC) generate F-actin-rich adhesion pedestals by delivering effector proteins into mammalian cells. These effectors include the translocated receptor Tir, along with EspF(U), a protein that associates indirectly with Tir and contains multiple peptide repeats that stimulate actin polymerization. In vitro, the EspF(U) repeat region is capable of binding and activating recombinant derivatives of N-WASP, a host actin nucleation-promoting factor. In spite of the identification of these important bacterial and host factors, the underlying mechanisms of how EHEC so potently exploits the native actin assembly machinery have not been clearly defined. Here we show that Tir and EspF(U) are sufficient for actin pedestal formation in cultured cells. Experimental clustering of Tir-EspF(U) fusion proteins indicates that the central role of the cytoplasmic portion of Tir is to promote clustering of the repeat region of EspF(U). Whereas clustering of a single EspF(U) repeat is sufficient to bind N-WASP and generate pedestals on cultured cells, multi-repeat EspF(U) derivatives promote actin assembly more efficiently. Moreover, the EspF(U) repeats activate a protein complex containing N-WASP and the actin-binding protein WIP in a synergistic fashion in vitro, further suggesting that the repeats cooperate to stimulate actin polymerization in vivo. One explanation for repeat synergy is that simultaneous engagement of multiple N-WASP molecules can enhance its ability to interact with the actin nucleating Arp2/3 complex. These findings define the minimal set of bacterial effectors required for pedestal formation and the elements within those effectors that contribute to actin assembly via N-WASP-Arp2/3-mediated signaling pathways.


Assuntos
Citoesqueleto de Actina/metabolismo , Proteínas de Transporte/química , Proteínas de Transporte/metabolismo , Escherichia coli Êntero-Hemorrágica/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Sequências Repetitivas de Aminoácidos , Proteína Neuronal da Síndrome de Wiskott-Aldrich/metabolismo , Complexo 2-3 de Proteínas Relacionadas à Actina/metabolismo , Sequência de Aminoácidos , Animais , Encéfalo/metabolismo , Proteínas de Transporte/genética , Proteínas do Citoesqueleto/genética , Proteínas do Citoesqueleto/metabolismo , DNA Bacteriano/genética , DNA Bacteriano/metabolismo , Escherichia coli Êntero-Hemorrágica/genética , Proteínas de Escherichia coli/genética , GTP Fosfo-Hidrolases/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Dados de Sequência Molecular , Estrutura Terciária de Proteína , Receptores de Superfície Celular/genética , Receptores de Superfície Celular/metabolismo , Proteínas Recombinantes de Fusão/metabolismo , Transdução de Sinais/genética , Suínos
8.
Mol Microbiol ; 56(3): 590-603, 2005 May.
Artigo em Inglês | MEDLINE | ID: mdl-15819617

RESUMO

A ubiquitous early step in infection of man and animals by enteric bacterial pathogens like Salmonella, Shigella and enteropathogenic Escherichia coli (EPEC) is the translocation of virulence effector proteins into mammalian cells via specialized type III secretion systems (TTSSs). Translocated effectors subvert the host cytoskeleton and stimulate signalling to promote bacterial internalization or survival. Target cell plasma membrane cholesterol is central to pathogen-host cross-talk, but the precise nature of its critical contribution remains unknown. Using in vitro cholesterol-binding assays, we demonstrate that Salmonella (SipB) and Shigella (IpaB) TTSS translocon components bind cholesterol with high affinity. Direct visualization of cell-associated fluorescently labelled SipB and parallel immunogold transmission electron microscopy revealed that cholesterol levels limit both the amount and distribution of plasma membrane-integrated translocon. Correspondingly, cholesterol depletion blocked effector translocation into cultured mammalian cells by not only the related Salmonella and Shigella TTSSs, but also the more divergent EPEC system. The data reveal that cholesterol-dependent association of the bacterial TTSS translocon with the target cell plasma membrane is essential for translocon activation and effector delivery into mammalian cells.


Assuntos
Proteínas de Bactérias/metabolismo , Colesterol/metabolismo , Proteínas de Membrana/metabolismo , Células 3T3/microbiologia , Animais , Proteínas da Membrana Bacteriana Externa/genética , Proteínas da Membrana Bacteriana Externa/metabolismo , Escherichia coli/metabolismo , Escherichia coli/patogenicidade , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Microdomínios da Membrana , Camundongos , Microscopia Eletrônica de Transmissão/métodos , Transporte Proteico/fisiologia , Salmonella typhimurium/metabolismo , Salmonella typhimurium/patogenicidade , Shigella flexneri/metabolismo , Shigella flexneri/patogenicidade , Virulência/fisiologia
9.
Mol Cell ; 13(4): 497-510, 2004 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-14992720

RESUMO

Salmonella force their way into nonphagocytic host intestinal cells to initiate infection. Uptake is triggered by delivery into the target cell of bacterial effector proteins that stimulate cytoskeletal rearrangements and membrane ruffling. The Salmonella invasion protein A (SipA) effector is an actin binding protein that enhances uptake efficiency by promoting actin polymerization. SipA-bound actin filaments (F-actin) are also resistant to artificial disassembly in vitro. Using biochemical assays of actin dynamics and actin-based motility models, we demonstrate that SipA directly arrests cellular mechanisms of actin turnover. SipA inhibits ADF/cofilin-directed depolymerization both by preventing binding of ADF and cofilin and by displacing them from F-actin. SipA also protects F-actin from gelsolin-directed severing and reanneals gelsolin-severed F-actin fragments. These data suggest that SipA focuses host cytoskeletal reorganization by locally inhibiting both ADF/cofilin- and gelsolin-directed actin disassembly, while simultaneously stimulating pathogen-induced actin polymerization.


Assuntos
Actinas/metabolismo , Proteínas de Bactérias/metabolismo , Salmonella/patogenicidade , Fatores de Despolimerização de Actina , Actinas/química , Actinas/ultraestrutura , Animais , Sítios de Ligação , Extratos Celulares , Citoesqueleto/metabolismo , Destrina , Gelsolina/metabolismo , Interações Hospedeiro-Parasita , Proteínas dos Microfilamentos/antagonistas & inibidores , Proteínas dos Microfilamentos/metabolismo , Modelos Moleculares , Estrutura Terciária de Proteína , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Xenopus
10.
Mol Microbiol ; 49(2): 425-39, 2003 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-12828640

RESUMO

An essential early event in Shigella and Salmonella pathogenesis is invasion of non-phagocytic intestinal epithelial cells. Pathogen entry is triggered by the delivery of multiple bacterial effector proteins into target mammalian cells. The Shigella invasion plasmid antigen B (IpaB), which inserts into the host plasma membrane, is required for effector delivery and invasion. To investigate the biochemical properties and membrane topology of IpaB, we purified the native full-length protein following expression in laboratory Escherichia coli. Purified IpaB assembled into trimers via an N-terminal domain predicted to form a trimeric coiled-coil, and is predominantly alpha-helical. Upon lipid interaction, two transmembrane domains (residues 313-333 and 399-419) penetrate the bilayer, allowing the intervening hydrophilic region (334-398) to cross the membrane. Purified IpaB integrated into model, erythrocyte and mammalian cell membranes without disrupting bilayer integrity, and induced liposome fusion in vitro. An IpaB-derived 162 residue alpha-helical polypeptide (IpaB(418-580)) is a potent inhibitor of IpaB-directed liposome fusion in vitro and blocked Shigella entry into cultured mammalian cells at 10(-8) M. It is also a heterologous inhibitor of Salmonella invasion protein B (SipB) activity and Salmonella entry. In contrast, IpaB(418-580) failed to prevent the contact-dependent haemolytic activity of Shigella. These findings question the proposed direct link between contact-dependent haemolysis and Shigella entry, and demonstrate that IpaB and SipB share biochemical properties and membrane topology, consistent with a conserved mode of action during cell entry.


Assuntos
Proteínas de Bactérias/metabolismo , Membrana Celular/metabolismo , Proteínas de Membrana/metabolismo , Salmonella/metabolismo , Shigella/metabolismo , Sequência de Aminoácidos , Proteínas de Bactérias/química , Proteínas de Bactérias/isolamento & purificação , Dicroísmo Circular , Eletrofisiologia , Células HeLa , Humanos , Lipossomos/metabolismo , Fusão de Membrana , Proteínas de Membrana/química , Proteínas de Membrana/isolamento & purificação , Estrutura Secundária de Proteína , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
11.
Mol Microbiol ; 45(6): 1715-27, 2002 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-12354236

RESUMO

Entry into non-phagocytic mammalian cells by the invasive pathogens Salmonella and Shigella is triggered by the delivery of bacterial virulence effector proteins into the host cell. This is dependent upon Salmonella SipB or its Shigella homologue IpaB, which insert into the eukaryotic cell plasma membrane. Here we show that a SipB-derived 166 residue alpha-helical polypeptide is a potent inhibitor of SipB-directed liposome fusion in vitro, preventing the membrane-associated form of SipB from inserting deeply into the bilayer. This polypeptide blocks Salmonella entry into cultured mammalian cells at 10(-10) M, and is a heterologous inhibitor of analogous IpaB activity and Shigella cell entry. These findings reveal a potential strategy to identify inhibitors of the 'trigger' mechanism underlying cell entry by these major invasive pathogens.


Assuntos
Proteínas de Bactérias/metabolismo , Células Eucarióticas/microbiologia , Proteínas de Membrana/metabolismo , Peptídeos/metabolismo , Salmonella/patogenicidade , Proteínas de Bactérias/antagonistas & inibidores , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Membrana Celular/metabolismo , Células HeLa , Humanos , Lipossomos/metabolismo , Proteínas de Membrana/química , Proteínas de Membrana/genética , Peptídeos/química , Peptídeos/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/farmacologia , Shigella/metabolismo , Shigella/patogenicidade , Virulência/efeitos dos fármacos
12.
Mol Microbiol ; 44(5): 1309-21, 2002 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-12068811

RESUMO

A critical early event in Salmonella infection is entry into intestinal epithelial cells. The Salmonella invasion protein SipB is required for the delivery of bacterial effector proteins into target eukaryotic cells, which subvert signal transduction pathways and cytoskeletal dynamics. SipB inserts into the host plasma membrane during infection, and the purified protein has membrane affinity and heterotypic membrane fusion activity in vitro. We used complementary biochemical and biophysical techniques to investigate the topology of purified SipB in a model membrane. We show that the 593 residue SipB is predominantly alpha-helical in aqueous solution, and that no significant change in secondary structural content accompanies lipid interaction. SipB contains two -helical transmembrane domains (residues 320-353 and 409-427), which insert deeply into the bilayer. Their integration allowed the hydrophilic region between the hydrophobic domains (354-408) to cross the bilayer. SipB membrane integration required both the hydrophobic domains and an additional helical C-terminal region (428-593). Further spectroscopic analysis of these domains in isolation showed that the hydrophobic regions insert obliquely into the bilayer, whereas the C-terminal domain associates with the bilayer surface, tilted parallel to the membrane. The combined data suggest a topological model for membrane-inserted SipB.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Bicamadas Lipídicas/metabolismo , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Estrutura Secundária de Proteína , Salmonella/metabolismo , Sequência de Aminoácidos , Animais , Proteínas de Bactérias/genética , Dicroísmo Circular , Humanos , Luz , Lipossomos/química , Lipossomos/metabolismo , Proteínas de Membrana/genética , Sondas Moleculares/química , Sondas Moleculares/metabolismo , Dados de Sequência Molecular , Estrutura Molecular , Estrutura Terciária de Proteína , Espectroscopia de Infravermelho com Transformada de Fourier
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...