Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Am Chem Soc ; 146(4): 2736-2747, 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38227768

RESUMO

Barocaloric effects─solid-state thermal changes induced by the application and removal of hydrostatic pressure─offer the potential for energy-efficient heating and cooling without relying on volatile refrigerants. Here, we report that dialkylammonium halides─organic salts featuring bilayers of alkyl chains templated through hydrogen bonds to halide anions─display large, reversible, and tunable barocaloric effects near ambient temperature. The conformational flexibility and soft nature of the weakly confined hydrocarbons give rise to order-disorder phase transitions in the solid state that are associated with substantial entropy changes (>200 J kg-1 K-1) and high sensitivity to pressure (>24 K kbar-1), the combination of which drives strong barocaloric effects at relatively low pressures. Through high-pressure calorimetry, X-ray diffraction, and Raman spectroscopy, we investigate the structural factors that influence pressure-induced phase transitions of select dialkylammonium halides and evaluate the magnitude and reversibility of their barocaloric effects. Furthermore, we characterize the cyclability of thin-film samples under aggressive conditions (heating rate of 3500 K s-1 and over 11,000 cycles) using nanocalorimetry. Taken together, these results establish dialkylammonium halides as a promising class of pressure-responsive thermal materials.

2.
Chem Sci ; 14(43): 12283-12291, 2023 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-37969596

RESUMO

Atomically precise nanoclusters (NCs) can be designed with high faradaic efficiency for the electrochemical reduction of CO2 to CO (FECO) and provide useful model systems for studying the metal-catalysed CO2 reduction reaction (CO2RR). While size-dependent trends are commonly evoked, the effect of NC size on catalytic activity is often convoluted by other factors such as changes to surface structure, ligand density, and electronic structure, which makes it challenging to establish rigorous structure-property relationships. Herein, we report a detailed investigation of a series of NCs [AunAg46-n(C[triple bond, length as m-dash]CR)24Cl4(PPh3)2, Au24Ag20(C[triple bond, length as m-dash]CR)24Cl2, and Au43(C[triple bond, length as m-dash]CR)20/Au42Ag1(C[triple bond, length as m-dash]CR)20] with similar sizes and core structures but different ligand packing densities to investigate how the number of accessible metal sites impacts CO2RR activity and selectivity. We develop a simple method to determine the number of CO2-accessible sites for a given NC then use this to probe relationships between surface accessibility and CO2RR performance for atomically precise NC catalysts. Specifically, the NCs with the highest number of accessible metal sites [Au43(C[triple bond, length as m-dash]CR)20 and Au42Ag1(C[triple bond, length as m-dash]CR)20] feature a FECO of >90% at -0.57 V vs. the reversible hydrogen electrode (RHE), while NCs with lower numbers of accessible metal sites have a reduced FECO. In addition, CO2RR studies performed on other Au-alkynyl NCs that span a wider range of sizes further support the relationship between FECO and the number of accessible metal sites, regardless of NC size. This work establishes a generalizable approach to evaluating the potential of atomically precise NCs for electrocatalysis.

3.
J Am Chem Soc ; 145(16): 9304-9312, 2023 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-37043219

RESUMO

Atomically precise metal nanoclusters (NCs) are an intriguing class of crystalline solids with unique physicochemical properties derived from tunable structures and compositions. Most atomically precise NCs require closed-shells and coordinatively saturated surface metals in order to be stable. Herein, we report Au43(C≡CtBu)20 and Au42Ag1(C≡CtBu)20, which feature open electronic and geometric shells, leading to both paramagnetism (23 valence e-) and enhanced catalytic activity from a single coordinatively unsaturated surface metal. The Au-alkynyl surface motifs of these NCs form five helical stripes around the inner Au12 kernel, imparting chirality and high thermal stability. Density functional theory (DFT) calculations suggest that there are minimal energy differences between the open-shelled NCs and hypothetical closed-shell systems and that the open-shelled electronic configuration gives rise to the largest band gap, which is known to promote cluster stability. Furthermore, we highlight how coordinatively unsaturated surface metals create active sites for the catalytic oxidation of benzyl alcohol to benzaldehyde, leading to high selectivity and increased conversion. This work represents the first example of an atomically precise Au NC with a double open-shelled structure and provides a promising platform for investigating the magnetic and catalytic properties of noble metal nanoparticles.

4.
J Am Chem Soc ; 144(48): 22262-22271, 2022 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-36441167

RESUMO

Owing to their high tunability and predictable structures, metal-organic materials offer a powerful platform to study glass formation and crystallization processes and to design glasses with unique properties. Here, we report a novel series of glass-forming metal-ethylenebis(acetamide) networks that undergo reversible glass and crystallization transitions below 200 °C. The glass-transition temperatures, crystallization kinetics, and glass stability of these materials are readily tunable, either by synthetic modification or by liquid-phase blending, to form binary glasses. Pair distribution function (PDF) analysis reveals extended structural correlations in both single and binary metal-bis(acetamide) glasses and highlights the important role of metal-metal correlations during structural evolution across glass-crystal transitions. Notably, the glass and crystalline phases of a Co-ethylenebis(acetamide) binary network feature a large reflectivity contrast ratio of 4.8 that results from changes in the local coordination environment around Co centers. These results provide new insights into glass-crystal transitions in metal-organic materials and have exciting implications for optical switching, rewritable data storage, and functional glass ceramics.


Assuntos
Cristalização , Vidro , Vidro/química
5.
Nat Commun ; 13(1): 2536, 2022 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-35534457

RESUMO

Pressure-induced thermal changes in solids-barocaloric effects-can be used to drive cooling cycles that offer a promising alternative to traditional vapor-compression technologies. Efficient barocaloric cooling requires materials that undergo reversible phase transitions with large entropy changes, high sensitivity to hydrostatic pressure, and minimal hysteresis, the combination of which has been challenging to achieve in existing barocaloric materials. Here, we report a new mechanism for achieving colossal barocaloric effects that leverages the large volume and conformational entropy changes of hydrocarbon order-disorder transitions within the organic bilayers of select two-dimensional metal-halide perovskites. Significantly, we show how the confined nature of these order-disorder phase transitions and the synthetic tunability of layered perovskites can be leveraged to reduce phase transition hysteresis through careful control over the inorganic-organic interface. The combination of ultralow hysteresis and high pressure sensitivity leads to colossal reversible isothermal entropy changes (>200 J kg-1 K-1) at record-low pressures (<300 bar).

6.
J Am Chem Soc ; 143(43): 18346-18352, 2021 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-34672573

RESUMO

We report that exposing the dipyrrin complex (EMindL)Cu(N2) to air affords rapid, quantitative uptake of O2 in either solution or the solid-state to yield (EMindL)Cu(O2). The air and thermal stability of (EMindL)Cu(O2) is unparalleled in molecular copper-dioxygen coordination chemistry, attributable to the ligand flanking groups which preclude the [Cu(O2)]1+ core from degradation. Despite the apparent stability of (EMindL)Cu(O2), dioxygen binding is reversible over multiple cycles with competitive solvent exchange, thermal cycling, and redox manipulations. Additionally, rapid, catalytic oxidation of 1,2-diphenylhydrazine to azoarene with the generation of hydrogen peroxide is observed, through the intermittency of an observable (EMindL)Cu(H2O2) adduct. The design principles gleaned from this study can provide insight for the formation of new materials capable of reversible scavenging of O2 from air under ambient conditions with low-coordinate CuI sorbents.


Assuntos
Complexos de Coordenação/química , Oxigênio/isolamento & purificação , Ar , Catálise , Cobre/química , Peróxido de Hidrogênio/síntese química , Oxirredução , Oxigênio/química , Fenil-Hidrazinas/química , Pirróis/química
7.
J Am Chem Soc ; 143(7): 2801-2811, 2021 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-33570911

RESUMO

Molten phases of metal-organic networks offer exciting opportunities for using coordination chemistry principles to access liquids and glasses with unique and tunable structures and properties. Here, we discuss general thermodynamic strategies to provide an increased enthalpic and entropic driving force for reversible, low-temperature melting transitions in extended coordination solids and illustrate this approach through a systematic study of a series of bis(acetamide)-based networks with record-low melting temperatures. The low melting temperatures of these compounds are the result of weak coordination bonds, conformationally flexible bridging ligands, and weak electrostatic interactions between spatially separated cations and anions, which collectively reduce the enthalpy and increase the entropy of fusion. Through a combination of crystallography, spectroscopy, and calorimetry, enthalpic trends are found to be dictated by the strength of coordination bonds and hydrogen bonds within each compound, while entropic trends are strongly influenced by the degree to which residual motion and positional disorder are restricted in the crystalline state. Extended X-ray absorption fine structure (EXAFS) and pair distribution function (PDF) analysis of Co(bba)3[CoCl4] [bba = N,N'-1,4-butylenebis(acetamide)], which features a record-low melting temperature for a three-dimensional metal-organic network of 124 °C, provide direct evidence of metal-ligand coordination in the liquid phase, as well as intermediate- and extended-range order that support its network-forming nature. In addition, rheological measurements are used to rationalize differences in glass-forming ability and relaxation dynamics. These results provide new insights into the structural and chemical factors that influence the thermodynamics of melting transitions of extended coordination solids, as well as the structure and properties of coordination network-forming liquids.

8.
J Am Chem Soc ; 142(45): 19170-19180, 2020 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-33135895

RESUMO

The development of materials that reversibly store high densities of thermal energy is critical to the more efficient and sustainable utilization of energy. Herein, we investigate metal-organic compounds as a new class of solid-liquid phase-change materials (PCMs) for thermal energy storage. Specifically, we show that isostructural series of divalent metal amide complexes featuring extended hydrogen bond networks can undergo tunable, high-enthalpy melting transitions over a wide temperature range. Moreover, these coordination compounds provide a powerful platform to explore the specific factors that contribute to the energy density and entropy of metal-organic PCMs. Through a systematic analysis of the structural and thermochemical properties of these compounds, we investigated the influence of coordination bonds, hydrogen-bond networks, neutral organic ligands, and outer-sphere anions on their phase-change thermodynamics. In particular, we identify the importance of high densities of coordination bonds and hydrogen bonds to achieving a high PCM energy density, and we show how metal-dependent changes to the local coordination environment during melting impact the entropy and enthalpy of metal-organic PCMs. These results highlight the potential of manipulating order-disorder phase transitions in metal-organic materials for thermal energy storage.

9.
Biophys J ; 111(10): 2125-2134, 2016 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-27851937

RESUMO

Phytochromes are red/far-red photoreceptors that are widely distributed in plants and prokaryotes. Ultrafast photoisomerization of a double bond in a biliverdin cofactor or other linear tetrapyrrole drives their photoactivity, but their photodynamics are only partially understood. Multiexponential dynamics were observed in previous ultrafast spectroscopic studies and were attributed to heterogeneous populations of the pigment-protein complex. In this work, two-dimensional photon echo spectroscopy was applied to study dynamics of the bacteriophytochromes RpBphP2 and PaBphP. Two-dimensional photon echo spectroscopy can simultaneously resolve inhomogeneity in ensembles and fast dynamics by correlating pump wavelength with the emitted signal wavelength. The distribution of absorption and emission energies within the same state indicates an ensemble of heterogeneous protein environments that are spectroscopically distinct. However, the lifetimes of the dynamics are uniform across the ensemble, suggesting a homogeneous model involving sequential intermediates for the initial photodynamics of isomerization.


Assuntos
Processos Fotoquímicos , Fitocromo/química , Isomerismo
10.
J Chem Phys ; 140(3): 034903, 2014 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-25669410

RESUMO

We present the synthesis and characterization of a benzodithiophene/thiophene alternating copolymer decorated with rigid, singly branched pendant side chains. We characterize exciton migration and recombination dynamics in these molecules in tetrahydrofuran solution, using a combination of static and time-resolved spectroscopies. As control experiments, we also measure electronic relaxation dynamics in isolated molecular analogues of both the side chain and polymer moieties. We employ semi-empirical and time-dependent density functional theory calculations to show that photoexcitation of the decorated copolymer using 395 nm laser pulses results in excited states primarily localized on the pendant side chains. We use ultrafast transient absorption spectroscopy to show that excitations are transferred to the polymer backbone faster than the instrumental response function, ∼250 fs.


Assuntos
Dendrímeros/química , Polímeros/química , Tiofenos/química , Derivados de Benzeno/química , Transferência de Energia , Luz , Modelos Moleculares , Espectrofotometria
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...