Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Langmuir ; 36(29): 8554-8559, 2020 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-32627557

RESUMO

In-plane, or azimuthal, photo-reorientation of azodye films using polarized exposure makes them promising alignment layers for a host of liquid crystal (LC) applications beyond displays including beam steering, q-plates, liquid crystal elastomer origami, and control of active matter. Out-of-plane, or polar, reorientation of azodye films, which dictates the liquid crystal pretilt, has received far less attention. Spatial control over the full polar and azimuthal orientation enables the generation of complex patterns that have broad interests and applications. In this paper, we describe an enhanced out-of-plane reorientation in Brilliant Yellow films utilizing a two-step exposure and demonstrate a liquid crystal pretilt angle that is tunable over a range of 0-33° with the associated anchoring strength of the alignment layer being unaffected by the inclusion of a pretilt. We report an order of magnitude increase in both amplitude and tunability of the pretilt angle in terms of previous results for single photoalignment films. This is a significant result for liquid crystal applications because it offers a simple, scalable, single-component solution with the potential to provide three-dimensional (3-D) patternability of the LC director at the surface.

2.
Appl Opt ; 57(28): 8264-8271, 2018 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-30461776

RESUMO

Microbolometers are the dominant technology for uncooled thermal imaging; however, devices based on a direct retardation measurement of a liquid crystal (LC) transducer pixel have been shown to have comparable sensitivity. In this paper, an approach for increasing LC transducer sensitivity utilizing an etalon structure is considered. A detailed design for an LC resonant cavity between dielectric mirrors is proposed and the performance is evaluated numerically. The measured quantity is the transmission of a visible wavelength through the etalon, which requires no thermal contact with the IR sensor. Numerical and analytical calculations that consider a 470 nm thick LC pixel demonstrate that the change in transmitted intensity with temperature is 26 times greater in the device based on a resonant structure than in a device based on a direct retardation measurement. Finally, the paper discusses how the dielectric mirror materials, dimensions of the resonant cavity structure, and expected process tolerances affect the sensitivity of the device.

3.
Materials (Basel) ; 11(7)2018 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-30002302

RESUMO

In this work, the detailed studies of surface polymerization stabilizing liquid crystal formed on an azodye sublayer are presented. The surface localized stabilization is obtained by free-radical polymerization of a dilute solution of a bi-functional reactive monomer (RM) in a liquid crystal (LC) solvent. To optimize the process for surface localized stabilization, we investigate the effects of several process parameters including RM concentration in LC hosts, the types of materials (either RM or LC), the photo-initiator (PI) concentration, ultra-violet (UV) polymerization intensity, and the UV curing temperature. The quality of surface localized stabilization is characterized and/or evaluated by optical microscopy, electro-optical behavior (transmission/voltage curve), the life test, and photo-bleaching. Our results show that, by carefully selecting materials, formulating mixtures, and controlling the polymerizing variables, the RM polymerization can be realized either at the surface or through the bulk. Overall, the combination of surface localized stabilization and photo-alignment offers an elegant and dynamic solution for controlling the alignment for LC, which could play a profound role in almost all liquid crystal optical devices.

4.
Appl Opt ; 57(5): 1151-1158, 2018 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-29469859

RESUMO

Lenses based on the Pancharatnam phase have the advantage of being thin and inexpensive. Unfortunately, their optical effect is strongly wavelength dependent, and their applications generally are limited by the requirement of a monochromatic source. However, low-power lenses based on the Pancharatnam phase can be considered for applications over the visible range. In this paper, we provide intuitive "limits" for the lens power, below which these devices can be considered for use with the eye and visible light imaging applications.

5.
Opt Express ; 25(6): 6283-6293, 2017 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-28380981

RESUMO

We have previously shown through simulation that an optical beam deflector based on the Pancharatnam (geometric) phase can provide high efficiency with up to 80° deflection using a dual-twist structure for polarization-state control [Appl. Opt.54, 10035 (2015)]. In this report, we demonstrate that its optical performance is as predicted and far beyond what could be expected for a conventional diffractive optical device. We provide details about construction and characterization of a ± 40° beam-steering device with 90% diffraction efficiency based on our dual-twist design at a 633nm wavelength.

6.
Appl Opt ; 55(5): 1145-50, 2016 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-26906390

RESUMO

We present a nonmechanical zoom lens system based on the Pancharatnam phase effect, which is controlled by the state of circularly polarized light. The device is shown to allow for a compact design for a wide range of zoom ratios. A demonstration system is shown, which has a 4× zoom ratio between its two electrically switchable states. We show its observed image quality experimentally and compare it with calculated expectations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...