Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
AMB Express ; 14(1): 66, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38842656

RESUMO

Bacterial contamination is the most prevalent infectious complication of blood transfusion in the developed world. To mitigate this, several ultraviolet light-based pathogen reduction technologies (PRTs), some of which require photo-chemicals, have been developed to minimize infection transmission. Relative to UV light, visible 405-nm light is safer and has shown potential to be developed as a PRT for the in situ treatment of ex vivo human plasma and platelet concentrates, without the need for photo-chemicals. This study investigates the effect of 405-nm light on human plasma, with focus on the compatibility of antimicrobial light doses with essential plasma clotting factors. To determine an effective antimicrobial dose that is compatible with plasma, prebagged human plasma (up to 300 mL) was seeded with common microbial contaminants and treated with increasing doses of 405-nm light (16 mW cm-2; ≤ 403 J cm-2). Post-exposure plasma protein integrity was investigated using an AOPP assay, in vitro coagulation tests, and ELISA-based measurement of fibrinogen and Protein S. Microbial contamination in 300 mL prebagged human plasma was significantly reduced (P ≤ 0.05) after exposure to ≤ 288 J cm-2, with microbial loads reduced by > 96.2%. This dose did not significantly affect the plasma protein quality parameters tested (P > 0.05). Increased doses (≥ 345 J cm-2) resulted in a 4.3% increase in clot times with no statistically significant change in protein activity or levels. Overall, this study has demonstrated that the effective microbicidal 405 light dose shows little to no negative effect on plasma quality.

2.
Bioengineering (Basel) ; 11(3)2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38534476

RESUMO

Acute recurrent tonsillitis is a chronic, biofilm-related infection that is a significant burden to patients and healthcare systems. It is often treated with repeated courses of antibiotics, which contributes to antimicrobial resistance. Studying biofilms is key to understanding this disease. In vitro modelling using 3D bioprinted hydrogels is a promising approach to achieve this. A novel gelatin-PEGDA pseudomonas fluorescens-laden bioink was developed and bioprinted in a 3D hydrogel construct fabricated using computer-aided design to mimic the tonsillar biofilm environment. The bioprinted constructs were cultured at 37 °C in lysogeny broth for 12 days. Bacterial growth was assessed by spectrophotometry. Cellular viability analysis was conducted using optical fluorescence microscopy (FDA/PI staining). A biocompatible 3D-printed bacteria-laden hydrogel construct was successfully fabricated. Bacterial growth was observed using optical fluorescence microscopy. A live/dead cellular-staining protocol demonstrated bacterial viability. Results obtained after the 12-day culture period showed higher bacterial growth in the 1% gelatin concentration construct compared to the 0% control. This study demonstrates the first use of a bacteria-laden gelatin-PEGDA hydrogel for biofabrication of a 3D-printed construct designed to model acute recurrent tonsillitis. Initiating a study with clinically relevant ex vivo tonsil bacteria will be an important next step in improving treatment of this impactful but understudied disease.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...