Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 15(33): 39966-39979, 2023 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-37561966

RESUMO

We used linker-assisted assembly (LAA) to tether CdS quantum dots (QDs) to MoS2 nanosheets via L-cysteine (cys) or mercaptoalkanoic acids (MAAs) of varying lengths, yielding ligand-bridged CdS/MoS2 heterostructures for redox photocatalysis. LAA afforded precise control over the light-harvesting properties of QDs within heterostructures. Photoexcited CdS QDs transferred electrons to molecularly linked MoS2 nanosheets from both band-edge and trap states; the electron-transfer dynamics was tunable with the properties of bridging ligands. Rate constants of electron transfer, estimated from time-correlated single photon counting (TCSPC) measurements, ranged from (9.8 ± 3.8) × 106 s-1 for the extraction of electrons from trap states within heterostructures incorporating the longest MAAs to >5 × 109 s-1 for the extraction of electrons from band-edge or trap states in heterostructures with cys or 3-mercaptopropionic acid (3MPA) linkers. Ultrafast transient absorption measurements revealed that electrons were transferred within 0.5-2 ps or less for CdS-cys-MoS2 and CdS-3MPA-MoS2 heterostructures, corresponding to rate constants ≥5 × 109 s-1. Photoinduced CdS-to-MoS2 electron transfer could be exploited in photocatalytic hydrogen evolution reaction (HER) via the reduction of H+ to H2 in concert with the oxidation of lactic acid. CdS-L-MoS2-functionalized FTO electrodes promoted HER under oxidative conditions wherein H2 was evolved at a Pt counter electrode with Faradaic efficiencies of 90% or higher and under reductive conditions wherein H2 was evolved at the CdS-L-MoS2-heterostructure-functionalized working electrode with Faradaic efficiencies of 25-40%. Dispersed CdS-L-MoS2 heterostructures promoted photocatalytic HER (15.1 µmol h-1) under white-light illumination, whereas free cys-capped CdS QDs produced threefold less H2 and unfunctionalized MoS2 nanosheets produced no measurable H2. Charge separation across the CdS/MoS2 interface is thus pivotal for redox photocatalysis. Our results reveal that LAA affords tunability of the properties of constituent CdS QDs and MoS2 nanosheets and precise, programmable, ligand-dependent control over the assembly, interfacial structure, charge-transfer dynamics, and photocatalytic reactivity of CdS-L-MoS2 heterostructures.

2.
J Chem Phys ; 156(5): 054706, 2022 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-35135276

RESUMO

Carbodiimide-mediated coupling chemistry was used to synthesize heterostructures of CdSe and CdTe quantum dots (QDs) with varying ratios of electron-donating CdTe QDs and electron-accepting CdSe QDs. Heterostructures were assembled via the formation of amide bonds between the terminal functional groups of CdTe-adsorbed 4-aminothiophenol (4-ATP) ligands and CdSe-adsorbed N-hydroxysuccinimide (NHS) ligands. The number of charge acceptors on the surfaces of QDs can greatly influence the rate constant of excited-state charge transfer with QDs capable of accommodating far more acceptors than molecular chromophores. We report here on excited-state electron transfer within heterostructure-forming mixtures of 4-ATP-capped CdTe and NHS-capped CdSe QDs with varying molar ratios of CdTe to CdSe. Photophysical properties and charge transfer were characterized using UV-vis absorption, steady-state emission, and time-resolved emission spectroscopy. As the relative concentration of electron-accepting CdSe QDs within mixtures of 4-ATP-capped CdTe and NHS-capped CdSe QDs increased, the rate and efficiency of electron transfer increased by 100-fold and 7.4-fold, respectively, as evidenced by dynamic quenching of band-edge emission from CdTe QDs. In contrast, for non-interacting mixtures of thiophenol capped CdTe QDs and NHS-capped CdSe QDs, which served as control samples, photophysical properties of the constituent QDs were unperturbed and excited-state charge transfer between the QDs was negligible. Our results reveal that carbodiimide-mediated coupling chemistry can be used to control the relative number of donor and acceptor QDs within heterostructures, which, in turn, enables fine-tuning of charge-transfer dynamics and yields. These amide-bridged dual-QD heterostructures are, thus, intriguing for light harvesting, charge transfer, and photocatalysis.

3.
ACS Appl Mater Interfaces ; 13(26): 30980-30991, 2021 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-34156237

RESUMO

We used N,N'-dicyclohexylcarbodiimide (DCC) coupling chemistry to synthesize (1) heterostructures of CdSe and CdTe quantum dots (QDs) in colloidal dispersions and (2) heterostructures of CdSe and CdTe QDs, as well as CdS and CdSe QDs, immobilized on metal oxide thin films. The DCC-mediated formation of amide bonds between terminal carboxylic acid and amine groups of ligands on different QDs drove the formation of heterostructures. This cross-linking mechanism selectively yields heterostructures and prohibits the undesired formation of homostructures consisting of just one type of QD. Products of adsorption, ligand-exchange, and covalent-coupling reactions were characterized by transmission electron microscopy and ATR-FTIR, 1H NMR, electronic absorption, steady-state emission, and time-resolved emission spectroscopy. Ground-state absorption spectra of constituent QDs were unperturbed upon incorporation into heterostructures, enabling control over electronic properties. Heterostructures of CdSe and CdTe QDs exhibit type-II interfacial energetic offsets that promote charge separation following excitation of either QD. Indeed, photoexcited CdTe QDs transferred electrons to CdSe, and photoexcited CdSe QDs transferred holes to CdTe, on time scales of 10-100 ns, as evidenced by dynamic quenching of band-edge and trap-state emission. Mixed dispersions of noninteracting QDs did not undergo excited-state charge transfer. Constructing heterostructures on TiO2 thin films introduced an additional charge-transfer pathway, electron transfer from QDs to TiO2, which occurred on subnanosecond time scales and enabled extended spatial separation of photogenerated electrons and holes. Our results reveal that carbodiimide coupling chemistry can be used to tether colloidal QDs selectively and covalently to each other, yielding dispersed or immobilized heterostructures with programmable compositions and energetic offsets that can undergo efficient excited-state interfacial electron transfer.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...