Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev Lett ; 132(13): 133201, 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38613284

RESUMO

We implement coherent delocalization as a tool for improving the two primary metrics of atomic clock performance: systematic uncertainty and instability. By decreasing atomic density with coherent delocalization, we suppress cold-collision shifts and two-body losses. Atom loss attributed to Landau-Zener tunneling in the ground lattice band would compromise coherent delocalization at low trap depths for our ^{171}Yb atoms; hence, we implement for the first time delocalization in excited lattice bands. Doing so increases the spatial distribution of atoms trapped in the vertically oriented optical lattice by ∼7 times. At the same time, we observe a reduction of the cold-collision shift by 6.5(8) times, while also making inelastic two-body loss negligible. With these advantages, we measure the trap-light-induced quenching rate and natural lifetime of the ^{3}P_{0} excited state as 5.7(7)×10^{-4} E_{r}^{-1} s^{-1} and 19(2) s, respectively.

2.
Phys Rev Lett ; 129(11): 113202, 2022 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-36154423

RESUMO

Laser cooling is a key ingredient for quantum control of atomic systems in a variety of settings. In divalent atoms, two-stage Doppler cooling is typically used to bring atoms to the µK regime. Here, we implement a pulsed radial cooling scheme using the ultranarrow ^{1}S_{0}-^{3}P_{0} clock transition in ytterbium to realize subrecoil temperatures, down to tens of nK. Together with sideband cooling along the one-dimensional lattice axis, we efficiently prepare atoms in shallow lattices at an energy of 6 lattice recoils. Under these conditions key limits on lattice clock accuracy and instability are reduced, opening the door to dramatic improvements. Furthermore, tunneling shifts in the shallow lattice do not compromise clock accuracy at the 10^{-19} level.

3.
Nature ; 564(7734): 87-90, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30487601

RESUMO

The passage of time is tracked by counting oscillations of a frequency reference, such as Earth's revolutions or swings of a pendulum. By referencing atomic transitions, frequency (and thus time) can be measured more precisely than any other physical quantity, with the current generation of optical atomic clocks reporting fractional performance below the 10-17 level1-5. However, the theory of relativity prescribes that the passage of time is not absolute, but is affected by an observer's reference frame. Consequently, clock measurements exhibit sensitivity to relative velocity, acceleration and gravity potential. Here we demonstrate local optical clock measurements that surpass the current ability to account for the gravitational distortion of space-time across the surface of Earth. In two independent ytterbium optical lattice clocks, we demonstrate unprecedented values of three fundamental benchmarks of clock performance. In units of the clock frequency, we report systematic uncertainty of 1.4 × 10-18, measurement instability of 3.2 × 10-19 and reproducibility characterized by ten blinded frequency comparisons, yielding a frequency difference of [-7 ± (5)stat ± (8)sys] × 10-19, where 'stat' and 'sys' indicate statistical and systematic uncertainty, respectively. Although sensitivity to differences in gravity potential could degrade the performance of the clocks as terrestrial standards of time, this same sensitivity can be used as a very sensitive probe of geopotential5-9. Near the surface of Earth, clock comparisons at the 1 × 10-18 level provide a resolution of one centimetre along the direction of gravity, so the performance of these clocks should enable geodesy beyond the state-of-the-art level. These optical clocks could further be used to explore geophysical phenomena10, detect gravitational waves11, test general relativity12 and search for dark matter13-17.

4.
Phys Rev Lett ; 120(18): 183201, 2018 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-29775346

RESUMO

We demonstrate the absence of a dc Stark shift in an ytterbium optical lattice clock. Stray electric fields are suppressed through the introduction of an in-vacuum Faraday shield. Still, the effectiveness of the shielding must be experimentally assessed. Such diagnostics are accomplished by applying high voltage to six electrodes, which are grounded in normal operation to form part of the Faraday shield. Our measurements place a constraint on the dc Stark shift at the 10^{-20} level, in units of the clock frequency. Moreover, we discuss a potential source of error in strategies to precisely measure or cancel nonzero dc Stark shifts, attributed to field gradients coupled with the finite spatial extent of the lattice-trapped atoms. With this consideration, we find that Faraday shielding, complemented with experimental validation, provides both a practically appealing and effective solution to the problem of dc Stark shifts in optical lattice clocks.

5.
Phys Rev Lett ; 119(25): 253001, 2017 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-29303326

RESUMO

Optical clocks benefit from tight atomic confinement enabling extended interrogation times as well as Doppler- and recoil-free operation. However, these benefits come at the cost of frequency shifts that, if not properly controlled, may degrade clock accuracy. Numerous theoretical studies have predicted optical lattice clock frequency shifts that scale nonlinearly with trap depth. To experimentally observe and constrain these shifts in an ^{171}Yb optical lattice clock, we construct a lattice enhancement cavity that exaggerates the light shifts. We observe an atomic temperature that is proportional to the optical trap depth, fundamentally altering the scaling of trap-induced light shifts and simplifying their parametrization. We identify an "operational" magic wavelength where frequency shifts are insensitive to changes in trap depth. These measurements and scaling analysis constitute an essential systematic characterization for clock operation at the 10^{-18} level and beyond.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...