Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biosens Bioelectron ; 228: 115218, 2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-36940633

RESUMO

Imperceptible wireless wearable devices are critical to advance digital medicine with the goal to capture clinical-grade biosignals continuously. Design of these systems is complex because of unique interdependent electromagnetic, mechanic and system level considerations that directly influence performance. Typically, approaches consider body location, related mechanical loads, and desired sensing capabilities, however, design for real world application context is not formulated. Wireless power casting eliminates user interaction and the need to recharge batteries, however, implementation is challenging because the use case influences performance. To facilitate a data-driven approach to design, we demonstrate a method for personalized, context-aware antenna, rectifier and wireless electronics design that considers human behavioral patterns and physiology to optimize electromagnetic and mechanical features for best performance across an average day of the target user group. Implementation of these methods result in devices that enable continuous recording of high-fidelity biosignals over weeks without the need for human interaction.


Assuntos
Técnicas Biossensoriais , Dispositivos Eletrônicos Vestíveis , Humanos , Técnicas Biossensoriais/métodos , Fenômenos Eletromagnéticos , Fontes de Energia Elétrica , Eletrônica
2.
Sci Adv ; 7(41): eabj3269, 2021 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-34623919

RESUMO

Digital medicine, the ability to stream continuous information from the body to gain insight into health status, manage disease, and predict onset health problems, is only gradually developing. Key technological hurdles that slow the proliferation of this approach are means by which clinical grade biosignals are continuously obtained without frequent user interaction. To overcome these hurdles, solutions in power supply and interface strategies that maintain high-fidelity readouts chronically are critical. This work introduces a previously unexplored class of devices that overcomes the limitations using digital manufacturing to tailor geometry, mechanics, electromagnetics, electronics, and fluidics to create unique personalized devices optimized to the wearer. These elastomeric, three-dimensional printed, and laser-structured constructs, called biosymbiotic devices, enable adhesive-free interfaces and the inclusion of high-performance, far-field energy harvesting to facilitate continuous wireless and battery-free operation of multimodal and multidevice, high-fidelity biosensing in an at-home setting without user interaction.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...