Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Nat Commun ; 6: 7540, 2015 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-26118893

RESUMO

Sprites are large, luminous electrical discharges in the upper atmosphere caused by intense cloud-to-ground lightning flashes, manifesting an impulsive coupling mechanism between lower and upper atmospheric regions. Their dynamics are governed by filamentary streamer discharges whose propagation properties have been well studied by past work. However, how they are initiated is still under active debate. It has recently been concluded that ionospheric/mesospheric inhomogeneities are required for their initiation, but it is an open question as to what the sources of those inhomogeneities are. Here we present numerical simulation results to demonstrate that naturally-existing, small-scale mesospheric structures such as those created by gravity waves via instability and breaking are viable sources. The proposed theory is supported by a recent, unique high-speed observation from aircraft flying at 14-km altitude. The theory naturally explains many aspects of observed sprite streamer initiation and has important implications for future observational work.

2.
Nat Commun ; 5: 3740, 2014 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-24806314

RESUMO

Sprites are spectacular optical emissions in the mesosphere induced by transient lightning electric fields above thunderstorms. Although the streamer nature of sprites has been generally accepted, how these filamentary plasmas are initiated remains a subject of active research. Here we present observational and modelling results showing solid evidence of pre-existing plasma irregularities in association with streamer initiation in the D-region ionosphere. The video observations show that before streamer initiation, kilometre-scale spatial structures descend rapidly with the overall diffuse emissions of the sprite halo, but slow down and stop to form the stationary glow in the vicinity of the streamer onset, from where streamers suddenly emerge. The modelling results reproduce the sub-millisecond halo dynamics and demonstrate that the descending halo structures are optical manifestations of the pre-existing plasma irregularities, which might have been produced by thunderstorm or meteor effects on the D-region ionosphere.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...