Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biomech ; 94: 180-186, 2019 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-31420153

RESUMO

The presence of multiple foot types has been used to explain the variability of foot structure observed among healthy adults. These foot types were determined by specific static morphologic features and included rectus (well aligned hindfoot/forefoot), planus (low arched), and cavus (high arched) foot types. Unique biomechanical characteristics of these foot types have been identified but reported differences in segmental foot kinematics among them has been inconsistent due to differences in neutral referencing and evaluation of only select discrete variables. This study used the radiographically-indexed Milwaukee Foot Model to evaluate differences in segmental foot kinematics among healthy adults with rectus, planus, and cavus feet based on the true bony alignment between segments. Based on the definitions of the individual foot types and due to conflicting results in previous literature, the primary study outcome was peak coronal hindfoot position during stance phase. Additionally, locally weighted regression smoothing with alpha-adjusted serial t-test analysis (LAAST) was used to compare these foot types across the entire gait cycle. Average peak hindfoot inversion was -1.6° ± 5.1°, 6.7° ± 3.5°, and 13.6° ± 4.6°, for the Planus, Rectus, and Cavus Groups, respectively. There were significant differences among all comparisons. Differences were observed between the Rectus and Planus Groups and Cavus and Planus Groups throughout the gait cycle. Additionally, the Planus Group had a premature peak velocity toward coronal varus and early transition toward valgus, likely due to a deficient windlass mechanism. This assessment of kinematic data across the gait cycle can help understand differences in dynamic foot function among foot types.


Assuntos
Articulação do Tornozelo/fisiopatologia , Tornozelo/fisiopatologia , Pé/fisiopatologia , Pé Cavo/fisiopatologia , Adulto , Fenômenos Biomecânicos , Feminino , Marcha , Mãos/fisiopatologia , Humanos , Masculino , Radiografia , Análise de Regressão , Adulto Jovem
2.
Gait Posture ; 72: 57-61, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31151088

RESUMO

BACKGROUND: While wearing shoes is common in daily activities, most foot kinematic models report results on barefoot conditions. It is difficult to describe foot position inside shoes. This study used fluoroscopic images to determine talocrural and subtalar motion. RESEARCH QUESTION: What are the differences in sagittal talocrual and subtalar kinematics between walking barefoot and while wearing athletic walking shoes? METHODS: Thirteen male subjects (mean age 22.9 ±â€¯2.9 years, mean weight 77.2 ±â€¯6.9 kg, mean height 178.2 ±â€¯3.7 cm) screened for normal gait were tested. A fluoroscopy unit was used to collect images during stance. Sagittal motion of the talocrural and subtalar joints of the right foot were analyzed barefoot and in an athletic walking shoe. RESULTS: Shod talocrural position at heel strike was 6.0° of dorsiflexion and shod peak talocrural plantarflexion was 4.2°. Barefoot talocrural plantarflexion at heel strike was 4.2° and barefoot peak talocrural plantarflexion was 10.9°. Shod subtalar position at heel strike was 2.6° of plantarflexion and peak subtalar dorsiflexion was 1.5°. The barefoot subtalar joint at heel strike was in 0.4° dorsiflexion and barefoot peak subtalar dorsiflexion was 3.5°. As the result of wearing shoes, average walking speed and stride length increased and average cadence decreased. Comparing barefoot to shod walking there was a statistical significance in talocrural dorsiflexion and at heel strike and peak talocrural dorsiflexion, subtalar plantarflexion at heel strike and peak subtalar dorsiflexion, walking speed, stride length, and cadence. SIGNIFICANCE: This work demonstrates the ability to directly measure talocrural and subtalar kinematics of shod walking using fluoroscopy. Future work using this methodology can be used to increase understanding of hindfoot kinematics during a variety of non-barefoot activities.


Assuntos
Articulação do Tornozelo/diagnóstico por imagem , Articulação do Tornozelo/fisiologia , Sapatos , Articulação Talocalcânea/diagnóstico por imagem , Articulação Talocalcânea/fisiologia , Caminhada/fisiologia , Adulto , Fenômenos Biomecânicos/fisiologia , Fluoroscopia , Humanos , Masculino , Velocidade de Caminhada/fisiologia , Adulto Jovem
3.
Foot Ankle Int ; 38(11): 1260-1266, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28800714

RESUMO

BACKGROUND: The purpose of the current study was to determine sagittal plane talocrural and subtalar kinematic differences between barefoot and controlled ankle movement (CAM) boot walking. This study used fluoroscopic images to determine talar motion relative to tibia and calcaneal motion relative to talus. METHODS: Fourteen male subjects (mean age 24.1 ± 3.5 years) screened for normal gait were tested. A fluoroscopy unit was used to collect images at 200 Hz during stance. Sagittal motion of the talocrural and subtalar joints were analyzed barefoot and within short and tall CAM boots. RESULTS: Barefoot talocrural mean maximum plantar and dorsiflexion were 9.2 ± 5.4 degrees and -7.5 ± 7.4 degrees, respectively; short CAM boot mean maximum plantar and dorsiflexion were 3.2 ± 4.0 degrees and -4.8 ± 10.2 degrees, respectively; and tall CAM boot mean maximum plantar and dorsiflexion were -0.2 ± 3.5 degrees and -2.4 ± 5.1 degrees, respectively. Talocrural mean range of motion (ROM) decreased from barefoot (16.7 ± 5.1 degrees) to short CAM boot (8.0 ± 4.9 degrees) to tall CAM boot (2.2 ± 2.5 degrees). Subtalar mean maximum plantarflexion angles were 5.3 ± 5.6 degrees for barefoot walking, 4.1 ± 5.9 degrees for short CAM boot walking, and 3.0 ± 4.7 degrees for tall CAM boot walking. Mean minimum subtalar plantarflexion angles were 0.7 ± 3.2 degrees for barefoot walking, 0.7 ± 2.9 degrees for short CAM boot walking, and 0.1 ± 4.8 degrees for tall CAM boot walking. Subtalar mean ROM decreased from barefoot (4.6 ± 3.9 degrees) to short CAM boot (3.4 ± 3.8 degrees) to tall CAM boot (2.9 ± 2.6 degrees). CONCLUSION: Tall and short CAM boot intervention was shown to limit both talocrural and subtalar motion in the sagittal plane during ambulation. The greatest reductions were seen with the tall CAM boot, which limited talocrural motion by 86.8% and subtalar motion by 37.0% compared to barefoot. Short CAM boot intervention reduced talocrural motion by 52.1% and subtalar motion by 26.1% compared to barefoot. CLINICAL RELEVANCE: Both short and tall CAM boots reduced talocrural and subtalar motion during gait. The short CAM boot was more convenient to use, whereas the tall CAM boot more effectively reduced motion. In treatments requiring greater immobilization of the talocrural and subtalar joints, the tall CAM boot should be considered.


Assuntos
Articulação do Tornozelo/fisiologia , Órtoses do Pé , Amplitude de Movimento Articular/fisiologia , Articulação Talocalcânea/fisiologia , Caminhada/fisiologia , Adulto , Articulação do Tornozelo/diagnóstico por imagem , Fenômenos Biomecânicos , Fluoroscopia/métodos , Voluntários Saudáveis , Humanos , Masculino , Valores de Referência , Estudos de Amostragem , Articulação Talocalcânea/diagnóstico por imagem , Suporte de Carga , Adulto Jovem
4.
Med Eng Phys ; 43: 118-123, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28259613

RESUMO

The purpose of this study was to quantify the accuracy and precision of a biplane fluoroscopy system for model-based tracking of in vivo hindfoot motion during over-ground gait. Gait was simulated by manually manipulating a cadaver foot specimen through a biplane fluoroscopy system attached to a walkway. Three 1.6-mm diameter steel beads were implanted into the specimen to provide marker-based tracking measurements for comparison to model-based tracking. A CT scan was acquired to define a gold standard of implanted bead positions and to create 3D models for model-based tracking. Static and dynamic trials manipulating the specimen through the capture volume were performed. Marker-based tracking error was calculated relative to the gold standard implanted bead positions. The bias, precision, and root-mean-squared (RMS) error of model-based tracking was calculated relative to the marker-based measurements. The overall RMS error of the model-based tracking method averaged 0.43 ± 0.22mm and 0.66 ± 0.43° for static and 0.59 ± 0.10mm and 0.71 ± 0.12° for dynamic trials. The model-based tracking approach represents a non-invasive technique for accurately measuring dynamic hindfoot joint motion during in vivo, weight bearing conditions. The model-based tracking method is recommended for application on the basis of the study results.


Assuntos
Fluoroscopia , Pé/anatomia & histologia , Pé/fisiologia , Marcha , Modelos Anatômicos , Adulto , Pé/diagnóstico por imagem , Humanos , Processamento de Imagem Assistida por Computador , Masculino , Tomografia Computadorizada por Raios X
5.
J Biomech Eng ; 138(3): 4032445, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26746901

RESUMO

Current methods of quantifying foot kinematics during gait typically use markers placed externally on bony anatomic locations. These models are unable to analyze talocrural or subtalar motion because the talus lacks palpable landmarks to place external markers. Alternative methods of measuring these clinically relevant joint motions are invasive and have been limited to research purposes only. This study explores the use of fluoroscopy to noninvasively quantify talocrural and subtalar sagittal plane kinematics. A fluoroscopy system (FS) was designed and built to synchronize with an existing motion analysis system (MAS). Simultaneous fluoroscopic, marker motion, and ground reaction force (GRF) data were collected for five subjects to demonstrate system application. A hindfoot sagittal plane model was developed to evaluate talocrural and subtalar joint motion. Maximum talocrural plantar and dorsiflexion angles averaged among all the subjects occur at 12% and 83% of stance, respectively, with a range of motion of 20.1 deg. Maximum talocrural plantar and dorsiflexion angles averaged among all the subjects occur at toe-off and 67% of stance, respectively, with a range of motion of 8.7 deg. Based on the favorable comparison between the current fluoroscopically measured kinematics and previously reported results from alternative methods, it is concluded that fluoroscopic technology is well suited for measuring the sagittal plane hindfoot motion.


Assuntos
Fluoroscopia , Pé/diagnóstico por imagem , Fenômenos Mecânicos , Fenômenos Biomecânicos , Calibragem , Estudos de Viabilidade , Pé/fisiologia , Humanos , Masculino , Teste de Materiais , Movimento , Adulto Jovem
6.
Foot Ankle Int ; 36(4): 430-5, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25380773

RESUMO

BACKGROUND: Identifying talar position during ambulation has proved difficult as the talus lacks palpable landmarks for skin marker placement and more invasive methodologies such as bone pins are not practical for most clinical subjects. A fluoroscopic motion system was used to track the talus and calcaneus, allowing kinematic analysis of the talocrural and subtalar joints. METHODS: Thirteen male subjects (mean age 22.9 ± 3.0 years) previously screened for normal gait were tested. A fluoroscopy unit was used to collect images at 120 fps during stance. Sagittal motion of the talocrural and subtalar joints were analyzed. RESULTS: The intersubject mean and standard deviation values for all 58 trials of 13 subjects are reported. Maximum talocrural joint plantarflexion of 11.2 degrees (4.3 degrees of standard deviation) occurred at 11% stance and maximum dorsiflexion of -6.9 degrees (5.6 degrees of standard deviation) occurred at 85%. Maximum subtalar joint plantarflexion of 4.8 degrees (1.0 degrees of standard deviation) occurred at 96% stance and maximum dorsiflexion of -3.6 degrees (2.3 degrees of standard deviation) occurred at 30%. Talocrural and subtalar range of motion values during stance were 18.1 and 8.4 degrees, respectively. CONCLUSION: Existing fluoroscopic technology was capable of defining sagittal plane talocrural and subtalar motion during gait. These kinematic results compare favorably with more invasive techniques. This type of assessment could support more routine analysis of in vivo bony motion during gait. CLINICAL RELEVANCE: Fluoroscopic technology offers improved sagittal plane motion evaluation during weight-bearing with potential application in patients with end-stage ankle arthritis, postoperative ankle replacements and fusions, and orthotics and braces.


Assuntos
Pé/fisiologia , Marcha/fisiologia , Articulação Talocalcânea/diagnóstico por imagem , Caminhada/fisiologia , Suporte de Carga/fisiologia , Adulto , Fenômenos Biomecânicos , Fluoroscopia/métodos , Voluntários Saudáveis , Humanos , Masculino , Valores de Referência , Estudos de Amostragem , Estresse Mecânico , Articulação Talocalcânea/fisiologia , Articulações Tarsianas/fisiologia , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...