Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 9(1): 230, 2019 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-30659222

RESUMO

Plastic responses may allow individuals to survive and reproduce in novel environments, and can facilitate the establishment of viable populations. But can novel environments reveal plasticity by causing a shift in a behavior as fundamental and conspicuous as daily activity? We studied daily activity times near the invasion front of the cane toad (Rhinella marina), an invasive species that has colonized much of northern Australia. Cane toads in Australia are nocturnal, probably because diurnal activity would subject them to intolerably hot and dry conditions in the tropical savannah during the dry season. Our study can demonstrate, however, that upon reaching novel environments some toad populations became diurnal. Sandstone gorges offered cane toads novel, deeply shaded habitat. Gorges with an east-west axis (day-long northern shadow), narrow gorges and narrow sections of gorges contained toads that were primarily diurnal, while gorges with a north-south axis, wide gorges and wide sections of gorges contained mainly nocturnal toads. For example, remote camera data (1314 observations of toad activity times over 789 trap days) revealed strictly nocturnal activity at four 'exposed' sites (99% of 144 observations over 179 days), compared to mostly diurnal activity at a 'shaded' site (78% of 254 observations). Visual encounter surveys confirmed that diurnal activity occurred exclusively at shaded sites, while most nocturnal activity occurred at exposed sites. The close proximity of diurnal and nocturnal toads (4-7 km) provided compelling evidence for the abovementioned physical factors as the proximate cause of the behavioral dichotomy, and for a novel (deeply shaded gorges) environment causing the shift to diurnal activity.


Assuntos
Adaptação Fisiológica , Comportamento Animal , Bufo marinus/fisiologia , Ritmo Circadiano , Ecossistema , Animais , Austrália , Espécies Introduzidas
2.
Ecol Evol ; 8(13): 6766-6778, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30038773

RESUMO

Numerous studies investigate morphology in the context of habitat, and lizards have received particular attention. Substrate usage is often reflected in the morphology of characters associated with locomotion, and, as a result, claws have become well-studied ecomorphological traits linking the two. The Kimberley predator guild of Western Australia consists of 10 sympatric varanid species. The purpose of this study was to quantify claw size and shape in the guild using geometric morphometrics, and determine whether these features correlated with substrate use and habitat. Each species was assigned a Habitat/substrate group based on the substrate their claws interact with in their respective habitat. Claw morphometrics were derived for both wild caught and preserved specimens from museum collections, using a 2D semilandmark analysis. Claw shape significantly separated based on Habitat/substrate group. Varanus gouldii and Varanus panoptes claws were associated with sprinting and extensive digging. Varanus mertensi claws were for shallow excavation. The remaining species' claws reflected specialization for some form of climbing, and differed based on substrate compliance. Varanus glauerti was best adapted for climbing rough sandstone, whereas Varanus scalaris and Varanus tristis had claws ideal for puncturing wood. Phylogenetic signal also significantly influenced claw shape, with Habitat/substrate group limited to certain clades. Positive size allometry allowed for claws to cope with mass increases, and shape allometry reflected a potential size limit on climbing. Claw morphology may facilitate niche separation within this trophic guild, especially when considered with body size. As these varanids are generalist predators, morphological traits associated with locomotion may be more reliable candidates for detecting niche partitioning than those associated directly with diet.

3.
Proc Biol Sci ; 284(1850)2017 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-28275142

RESUMO

The striking resemblance of long-snouted aquatic mammals and reptiles has long been considered an example of morphological convergence, yet the true cause of this similarity remains untested. We addressed this deficit through three-dimensional morphometric analysis of the full diversity of crocodilian and toothed whale (Odontoceti) skull shapes. Our focus on biomechanically important aspects of shape allowed us to overcome difficulties involved in comparing mammals and reptiles, which have fundamental differences in the number and position of skull bones. We examined whether diet, habitat and prey size correlated with skull shape using phylogenetically informed statistical procedures. Crocodilians and toothed whales have a similar range of skull shapes, varying from extremely short and broad to extremely elongate. This spectrum of shapes represented more of the total variation in our dataset than between phylogenetic groups. The most elongate species (river dolphins and gharials) are extremely convergent in skull shape, clustering outside of the range of the other taxa. Our results suggest the remarkable convergence between long-snouted river dolphins and gharials is driven by diet rather than physical factors intrinsic to riverine environments. Despite diverging approximately 288 million years ago, crocodilians and odontocetes have evolved a remarkably similar morphological solution to feeding on similar prey.


Assuntos
Jacarés e Crocodilos/anatomia & histologia , Crânio/anatomia & histologia , Baleias/anatomia & histologia , Animais , Filogenia
4.
Ecology ; 96(9): 2544-54, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26594710

RESUMO

Although invasive species can have substantial impacts on animal communities, cases of invasive species facilitating native species by removing their predators have rarely been demonstrated across vertebrate trophic linkages. The predictable spread of the invasive cane toad (Rhinella marina), however, offered a unique opportunity to quantify cascading effects. In northern Australia, three species of predatory monitor lizards suffered severe population declines due to toad-induced lethal toxic ingestion (yellow-spotted monitor (Varanus panoptes), Mertens' water monitor (V. mertensi), Mitchell's water monitor (V. mitchelli). We, thus, predicted subsequent increases in the abundance and recruitment of prey species due to the reduction of those predators. Toad-induced population-level declines in the water monitor species approached 50% over a five-year period spanning the toad invasion, apparently causing fledging success of the Crimson Finch (Neochmia.phaeton) to increase from 55% to 81%. The consensus of our original and published long-term data is that invasive cane toads are causing predators to lose a foothold on top-down regulation of their prey, triggering shifts in the relative densities of predator and prey in the Australian tropical savannah ecosystem.


Assuntos
Aves/fisiologia , Bufo marinus/fisiologia , Espécies Introduzidas , Lagartos/fisiologia , Comportamento Predatório/fisiologia , Animais , Austrália , Cadeia Alimentar , Pradaria , Dinâmica Populacional , Clima Tropical
5.
PLoS One ; 10(6): e0130625, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26106889

RESUMO

Skull structure is intimately associated with feeding ability in vertebrates, both in terms of specific performance measures and general ecological characteristics. This study quantitatively assessed variation in the shape of the cranium and mandible in varanoid lizards, and its relationship to structural performance (von Mises strain) and interspecific differences in feeding ecology. Geometric morphometric and linear morphometric analyses were used to evaluate morphological differences, and finite element analysis was used to quantify variation in structural performance (strain during simulated biting, shaking and pulling). This data was then integrated with ecological classes compiled from relevant scientific literature on each species in order to establish structure-function relationships. Finite element modelling results showed that variation in cranial morphology resulted in large differences in the magnitudes and locations of strain in biting, shaking and pulling load cases. Gracile species such as Varanus salvadorii displayed high strain levels during shaking, especially in the areas between the orbits. All models exhibit less strain during pull back loading compared to shake loading, even though a larger force was applied (pull =30N, shake = 20N). Relationships were identified between the morphology, performance, and ecology. Species that did not feed on hard prey clustered in the gracile region of cranial morphospace and exhibited significantly higher levels of strain during biting (P = 0.0106). Species that fed on large prey clustered in the elongate area of mandible morphospace. This relationship differs from those that have been identified in other taxonomic groups such as crocodiles and mammals. This difference may be due to a combination of the open 'space-frame' structure of the varanoid lizard skull, and the 'pull back' behaviour that some species use for processing large prey.


Assuntos
Biodiversidade , Lagartos/anatomia & histologia , Crânio/anatomia & histologia , Animais , Fenômenos Biomecânicos , Força de Mordida , Análise de Elementos Finitos , Modelos Lineares , Lagartos/fisiologia , Mandíbula/anatomia & histologia , Mandíbula/diagnóstico por imagem , Mandíbula/fisiologia , Filogenia , Comportamento Predatório , Crânio/diagnóstico por imagem , Crânio/fisiologia , Especificidade da Espécie , Estresse Mecânico , Tomografia Computadorizada por Raios X
6.
PeerJ ; 3: e988, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26056620

RESUMO

The reliability of finite element analysis (FEA) in biomechanical investigations depends upon understanding the influence of model assumptions. In producing finite element models, surface mesh resolution is influenced by the resolution of input geometry, and influences the resolution of the ensuing solid mesh used for numerical analysis. Despite a large number of studies incorporating sensitivity studies of the effects of solid mesh resolution there has not yet been any investigation into the effect of surface mesh resolution upon results in a comparative context. Here we use a dataset of crocodile crania to examine the effects of surface resolution on FEA results in a comparative context. Seven high-resolution surface meshes were each down-sampled to varying degrees while keeping the resulting number of solid elements constant. These models were then subjected to bite and shake load cases using finite element analysis. The results show that incremental decreases in surface resolution can result in fluctuations in strain magnitudes, but that it is possible to obtain stable results using lower resolution surface in a comparative FEA study. As surface mesh resolution links input geometry with the resulting solid mesh, the implication of these results is that low resolution input geometry and solid meshes may provide valid results in a comparative context.

7.
PLoS One ; 10(5): e0125723, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25938463

RESUMO

The origin of terrestrial tetrapods was a key event in vertebrate evolution, yet how and when it occurred remains obscure, due to scarce fossil evidence. Here, we show that the study of palaeopathologies, such as broken and healed bones, can help elucidate poorly understood behavioural transitions such as this. Using high-resolution finite element analysis, we demonstrate that the oldest known broken tetrapod bone, a radius of the primitive stem tetrapod Ossinodus pueri from the mid-Viséan (333 million years ago) of Australia, fractured under a high-force, impact-type loading scenario. The nature of the fracture suggests that it most plausibly occurred during a fall on land. Augmenting this are new osteological observations, including a preferred directionality to the trabecular architecture of cancellous bone. Together, these results suggest that Ossinodus, one of the first large (>2m length) tetrapods, spent a significant proportion of its life on land. Our findings have important implications for understanding the temporal, biogeographical and physiological contexts under which terrestriality in vertebrates evolved. They push the date for the origin of terrestrial tetrapods further back into the Carboniferous by at least two million years. Moreover, they raise the possibility that terrestriality in vertebrates first evolved in large tetrapods in Gondwana rather than in small European forms, warranting a re-evaluation of this important evolutionary event.


Assuntos
Osso e Ossos/patologia , Filogenia , Vertebrados/anatomia & histologia , Animais , Osso e Ossos/diagnóstico por imagem , Calo Ósseo/diagnóstico por imagem , Calo Ósseo/patologia , Análise de Elementos Finitos , Fósseis , Fraturas Ósseas/diagnóstico por imagem , Fraturas Ósseas/patologia , Processamento de Imagem Assistida por Computador , Rádio (Anatomia)/diagnóstico por imagem , Rádio (Anatomia)/patologia , Tomografia Computadorizada por Raios X
8.
Anat Sci Educ ; 7(6): 479-86, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24976019

RESUMO

The teaching of anatomy has consistently been the subject of societal controversy, especially in the context of employing cadaveric materials in professional medical and allied health professional training. The reduction in dissection-based teaching in medical and allied health professional training programs has been in part due to the financial considerations involved in maintaining bequest programs, accessing human cadavers and concerns with health and safety considerations for students and staff exposed to formalin-containing embalming fluids. This report details how additive manufacturing or three-dimensional (3D) printing allows the creation of reproductions of prosected human cadaver and other anatomical specimens that obviates many of the above issues. These 3D prints are high resolution, accurate color reproductions of prosections based on data acquired by surface scanning or CT imaging. The application of 3D printing to produce models of negative spaces, contrast CT radiographic data using segmentation software is illustrated. The accuracy of printed specimens is compared with original specimens. This alternative approach to producing anatomically accurate reproductions offers many advantages over plastination as it allows rapid production of multiple copies of any dissected specimen, at any size scale and should be suitable for any teaching facility in any country, thereby avoiding some of the cultural and ethical issues associated with cadaver specimens either in an embalmed or plastinated form.


Assuntos
Anatomia/educação , Recursos Audiovisuais , Impressão Tridimensional , Impressão Tridimensional/economia
9.
PeerJ ; 2: e355, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24860694

RESUMO

The investigation of form-function relationships requires a detailed understanding of anatomical systems. Here we document the 3-dimensional morphology of the cranial musculoskeletal anatomy in the Australian Laughing Kookaburra Dacelo novaeguineae, with a focus upon the geometry and attachments of the jaw muscles in this species. The head of a deceased specimen was CT scanned, and an accurate 3D representation of the skull and jaw muscles was generated through manual segmentation of the CT scan images, and augmented by dissection of the specimen. We identified 14 major jaw muscles: 6 in the temporal group (M. adductor mandibulae and M. pseudotemporalis), 7 in the pterygoid group (M. pterygoideus dorsalis and M. pterygoideus ventralis), and the single jaw abductor M. depressor mandibulae. Previous descriptions of avian jaw musculature are hindered by limited visual representation and inconsistency in the nomenclature. To address these issues, we: (1) present the 3D model produced from the segmentation process as a digital, fully interactive model in the form of an embedded 3D image, which can be viewed from any angle, and within which major components can be set as opaque, transparent, or hidden, allowing the anatomy to be visualised as required to provide a detailed understanding of the jaw anatomy; (2) provide a summary of the nomenclature used throughout the avian jaw muscle literature. The approach presented here provides considerable advantages for the documentation and communication of detailed anatomical structures in a wide range of taxa.

10.
PeerJ ; 1: e204, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24255817

RESUMO

Finite element analysis (FEA) is a computational technique of growing popularity in the field of comparative biomechanics, and is an easily accessible platform for form-function analyses of biological structures. However, its rapid evolution in recent years from a novel approach to common practice demands some scrutiny in regards to the validity of results and the appropriateness of assumptions inherent in setting up simulations. Both validation and sensitivity analyses remain unexplored in many comparative analyses, and assumptions considered to be 'reasonable' are often assumed to have little influence on the results and their interpretation. HERE WE REPORT AN EXTENSIVE SENSITIVITY ANALYSIS WHERE HIGH RESOLUTION FINITE ELEMENT (FE) MODELS OF MANDIBLES FROM SEVEN SPECIES OF CROCODILE WERE ANALYSED UNDER LOADS TYPICAL FOR COMPARATIVE ANALYSIS: biting, shaking, and twisting. Simulations explored the effect on both the absolute response and the interspecies pattern of results to variations in commonly used input parameters. Our sensitivity analysis focuses on assumptions relating to the selection of material properties (heterogeneous or homogeneous), scaling (standardising volume, surface area, or length), tooth position (front, mid, or back tooth engagement), and linear load case (type of loading for each feeding type). Our findings show that in a comparative context, FE models are far less sensitive to the selection of material property values and scaling to either volume or surface area than they are to those assumptions relating to the functional aspects of the simulation, such as tooth position and linear load case. Results show a complex interaction between simulation assumptions, depending on the combination of assumptions and the overall shape of each specimen. Keeping assumptions consistent between models in an analysis does not ensure that results can be generalised beyond the specific set of assumptions used. Logically, different comparative datasets would also be sensitive to identical simulation assumptions; hence, modelling assumptions should undergo rigorous selection. The accuracy of input data is paramount, and simulations should focus on taking biological context into account. Ideally, validation of simulations should be addressed; however, where validation is impossible or unfeasible, sensitivity analyses should be performed to identify which assumptions have the greatest influence upon the results.

11.
PLoS One ; 8(9): e69446, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24086243

RESUMO

With the latest release of the S2PLOT graphics library, embedding interactive, 3-dimensional (3-d) scientific figures in Adobe Portable Document Format (PDF) files is simple, and can be accomplished without commercial software. In this paper, we motivate the need for embedding 3-d figures in scholarly articles. We explain how 3-d figures can be created using the S2PLOT graphics library, exported to Product Representation Compact (PRC) format, and included as fully interactive, 3-d figures in PDF files using the movie15 LaTeX package. We present new examples of 3-d PDF figures, explain how they have been made, validate them, and comment on their advantages over traditional, static 2-dimensional (2-d) figures. With the judicious use of 3-d rather than 2-d figures, scientists can now publish, share and archive more useful, flexible and faithful representations of their study outcomes. The article you are reading does not have embedded 3-d figures. The full paper, with embedded 3-d figures, is recommended and is available as a supplementary download from PLoS ONE (File S2).


Assuntos
Editoração , Software , Imageamento Tridimensional , Linguagens de Programação
12.
PLoS One ; 8(1): e53873, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23342027

RESUMO

BACKGROUND: Crocodilians exhibit a spectrum of rostral shape from long snouted (longirostrine), through to short snouted (brevirostrine) morphologies. The proportional length of the mandibular symphysis correlates consistently with rostral shape, forming as much as 50% of the mandible's length in longirostrine forms, but 10% in brevirostrine crocodilians. Here we analyse the structural consequences of an elongate mandibular symphysis in relation to feeding behaviours. METHODS/PRINCIPAL FINDINGS: Simple beam and high resolution Finite Element (FE) models of seven species of crocodile were analysed under loads simulating biting, shaking and twisting. Using beam theory, we statistically compared multiple hypotheses of which morphological variables should control the biomechanical response. Brevi- and mesorostrine morphologies were found to consistently outperform longirostrine types when subject to equivalent biting, shaking and twisting loads. The best predictors of performance for biting and twisting loads in FE models were overall length and symphyseal length respectively; for shaking loads symphyseal length and a multivariate measurement of shape (PC1- which is strongly but not exclusively correlated with symphyseal length) were equally good predictors. Linear measurements were better predictors than multivariate measurements of shape in biting and twisting loads. For both biting and shaking loads but not for twisting, simple beam models agree with best performance predictors in FE models. CONCLUSIONS/SIGNIFICANCE: Combining beam and FE modelling allows a priori hypotheses about the importance of morphological traits on biomechanics to be statistically tested. Short mandibular symphyses perform well under loads used for feeding upon large prey, but elongate symphyses incur high strains under equivalent loads, underlining the structural constraints to prey size in the longirostrine morphotype. The biomechanics of the crocodilian mandible are largely consistent with beam theory and can be predicted from simple morphological measurements, suggesting that crocodilians are a useful model for investigating the palaeobiomechanics of other aquatic tetrapods.


Assuntos
Jacarés e Crocodilos/anatomia & histologia , Jacarés e Crocodilos/fisiologia , Mandíbula/anatomia & histologia , Mandíbula/fisiologia , Fenômenos Mecânicos , Animais , Fenômenos Biomecânicos , Força de Mordida , Análise de Elementos Finitos , Modelos Biológicos , Comportamento Predatório
13.
PLoS One ; 6(10): e26226, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22028837

RESUMO

In addition to biting, it has been speculated that the forces resulting from pulling on food items may also contribute to feeding success in carnivorous vertebrates. We present an in vivo analysis of both bite and pulling forces in Varanus komodoensis, the Komodo dragon, to determine how they contribute to feeding behavior. Observations of cranial modeling and behavior suggest that V. komodoensis feeds using bite force supplemented by pulling in the caudal/ventrocaudal direction. We tested these observations using force gauges/transducers to measure biting and pulling forces. Maximum bite force correlates with both body mass and total body length, likely due to increased muscle mass. Individuals showed consistent behaviors when biting, including the typical medial-caudal head rotation. Pull force correlates best with total body length, longer limbs and larger postcranial motions. None of these forces correlated well with head dimensions. When pulling, V. komodoensis use neck and limb movements that are associated with increased caudal and ventral oriented force. Measured bite force in Varanus komodoensis is similar to several previous estimations based on 3D models, but is low for its body mass relative to other vertebrates. Pull force, especially in the ventrocaudal direction, would allow individuals to hunt and deflesh with high success without the need of strong jaw adductors. In future studies, pull forces need to be considered for a complete understanding of vertebrate carnivore feeding dynamics.


Assuntos
Ração Animal , Carnivoridade/fisiologia , Fenômenos Mecânicos , Répteis/fisiologia , Animais , Fenômenos Biomecânicos , Peso Corporal , Masculino , Comportamento Predatório/fisiologia , Répteis/anatomia & histologia
14.
Proc Biol Sci ; 277(1700): 3579-86, 2010 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-20554545

RESUMO

Diminished bite force has been considered a defining feature of modern Homo sapiens, an interpretation inferred from the application of two-dimensional lever mechanics and the relative gracility of the human masticatory musculature and skull. This conclusion has various implications with regard to the evolution of human feeding behaviour. However, human dental anatomy suggests a capacity to withstand high loads and two-dimensional lever models greatly simplify muscle architecture, yielding less accurate results than three-dimensional modelling using multiple lines of action. Here, to our knowledge, in the most comprehensive three-dimensional finite element analysis performed to date for any taxon, we ask whether the traditional view that the bite of H. sapiens is weak and the skull too gracile to sustain high bite forces is supported. We further introduce a new method for reconstructing incomplete fossil material. Our findings show that the human masticatory apparatus is highly efficient, capable of producing a relatively powerful bite using low muscle forces. Thus, relative to other members of the superfamily Hominoidea, humans can achieve relatively high bite forces, while overall stresses are reduced. Our findings resolve apparently discordant lines of evidence, i.e. the presence of teeth well adapted to sustain high loads within a lightweight cranium and mandible.


Assuntos
Mandíbula , Crânio , Animais , Evolução Biológica , Fenômenos Biomecânicos , Força de Mordida , Análise de Elementos Finitos , Fósseis , Hominidae/anatomia & histologia , Hominidae/fisiologia , Mandíbula/anatomia & histologia , Mandíbula/fisiologia , Músculos da Mastigação/anatomia & histologia , Músculos da Mastigação/fisiologia , Modelos Biológicos , Crânio/anatomia & histologia , Crânio/fisiologia , Estresse Mecânico , Humanos
15.
Proc Natl Acad Sci U S A ; 104(41): 16010-5, 2007 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-17911253

RESUMO

The American sabercat Smilodon fatalis is among the most charismatic of fossil carnivores. Despite broad agreement that its extraordinary anatomy reflects unique hunting techniques, after >150 years of study, many questions remain concerning its predatory behavior. Were the "sabers" used to take down large prey? Were prey killed with an eviscerating bite to the abdomen? Was its bite powerful or weak compared with that of modern big cats? Here we quantitatively assess the sabercat's biomechanical performance using the most detailed computer reconstructions yet developed for the vertebrate skull. Our results demonstrate that bite force driven by jaw muscles was relatively weak in S. fatalis, one-third that of a lion (Panthera leo) of comparable size, and its skull was poorly optimized to resist the extrinsic loadings generated by struggling prey. Its skull is better optimized for bites on restrained prey where the bite is augmented by force from the cervical musculature. We conclude that prey were brought to ground and restrained before a killing bite, driven in large part by powerful cervical musculature. Because large prey is easier to restrain if its head is secured, the killing bite was most likely directed to the neck. We suggest that the more powerful jaw muscles of P. leo may be required for extended, asphyxiating bites and that the relatively low bite forces in S. fatalis might reflect its ability to kill large prey more quickly, avoiding the need for prolonged bites.


Assuntos
Felidae/anatomia & histologia , Felidae/fisiologia , Comportamento Predatório/fisiologia , Animais , Fenômenos Biomecânicos , Fósseis , Imageamento Tridimensional , Arcada Osseodentária/anatomia & histologia , Arcada Osseodentária/fisiologia , Leões/anatomia & histologia , Leões/fisiologia , Modelos Biológicos , Especificidade da Espécie
16.
Anat Rec A Discov Mol Cell Evol Biol ; 288(8): 827-49, 2006 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-16835925

RESUMO

This article reports the use of simple beam and finite-element models to investigate the relationship between rostral shape and biomechanical performance in living crocodilians under a range of loading conditions. Load cases corresponded to simple biting, lateral head shaking, and twist feeding behaviors. The six specimens were chosen to reflect, as far as possible, the full range of rostral shape in living crocodilians: a juvenile Caiman crocodilus, subadult Alligator mississippiensis and Crocodylus johnstoni, and adult Caiman crocodilus, Melanosuchus niger, and Paleosuchus palpebrosus. The simple beam models were generated using morphometric landmarks from each specimen. Three of the finite-element models, the A. mississippiensis, juvenile Caiman crocodilus, and the Crocodylus johnstoni, were based on CT scan data from respective specimens, but these data were not available for the other models and so these--the adult Caiman crocodilus, M. niger, and P. palpebrosus--were generated by morphing the juvenile Caiman crocodilus mesh with reference to three-dimensional linear distance measured from specimens. Comparison of the mechanical performance of the six finite-element models essentially matched results of the simple beam models: relatively tall skulls performed best under vertical loading and tall and wide skulls performed best under torsional loading. The widely held assumption that the platyrostral (dorsoventrally flattened) crocodilian skull is optimized for torsional loading was not supported by either simple beam theory models or finite-element modeling. Rather than being purely optimized against loads encountered while subduing and processing food, the shape of the crocodilian rostrum may be significantly affected by the hydrodynamic constraints of catching agile aquatic prey. This observation has important implications for our understanding of biomechanics in crocodilians and other aquatic reptiles.


Assuntos
Jacarés e Crocodilos/anatomia & histologia , Jacarés e Crocodilos/fisiologia , Crânio/anatomia & histologia , Crânio/fisiologia , Animais , Fenômenos Biomecânicos , Comportamento Alimentar , Análise de Elementos Finitos , Modelos Anatômicos , Modelos Biológicos , Comportamento Predatório , Crânio/diagnóstico por imagem , Especificidade da Espécie , Tomografia Computadorizada por Raios X
17.
Science ; 310(5745): 75, 2005 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-16210529

RESUMO

Elasmosaurid plesiosaurs were an important part of Cretaceous marine reptile communities and are generally considered to have been predators of small, agile, free-swimming fish and cephalopods. Two elasmosaurid specimens from Aptian and Albian deposits in Queensland, Australia, include fossilized gut contents dominated by benthic invertebrates: bivalves, gastropods, and crustaceans. Both specimens also contained large numbers of gastroliths (stomach stones). These finds point to a wider niche than has previously been supposed for these seemingly specialized predators and may also influence long-running controversy over the question of gastrolith function in plesiosaurs.


Assuntos
Dieta , Fósseis , Invertebrados , Moluscos , Répteis , Animais , Crustáceos , Comportamento Alimentar , Conteúdo Gastrointestinal , Queensland , Répteis/anatomia & histologia , Répteis/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...