Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Pharm ; 17(9): 3487-3500, 2020 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-32672976

RESUMO

Implantable devices are versatile and promising drug delivery systems, and their advantages are well established. Of these advantages, long-acting drug delivery is perhaps the most valuable. Hydrophilic compounds are particularly difficult to deliver for prolonged times. This work investigates the use of poly(caprolactone) (PCL)-based implant coatings as a novel strategy to prolong the delivery of hydrophilic compounds from implantable devices that have been prepared by additive manufacturing (AM). Hollow implants were prepared from poly(lactic acid) (PLA) and poly(vinyl alcohol) (PVA) using fused filament fabrication (FFF) AM and subsequently coated in a PCL-based coating. Coatings were prepared by solution-casting mixtures of differing molecular weights of PCL and poly(ethylene glycol) (PEG). Increasing the proportion of low-molecular-weight PCL up to 60% in the formulations decreased the crystallinity by over 20%, melting temperature by over 4 °C, and water contact angle by over 40°, resulting in an increased degradation rate when compared to pure high-molecular-weight PCL. Addition of 30% PEG to the formulation increased the porosity of the formulation by over 50% when compared to an equivalent PCL-only formulation. These implants demonstrated in vitro release rates for hydrophilic model compounds (methylene blue and ibuprofen sodium) ranging from 0.01 to 34.09 mg/day, depending on the drug used. The versatility of the devices produced in this work and the range of release rates achievable show great potential. Implants could be specifically developed in order to match the specific release rate required for a number of drugs for a wide range of conditions.


Assuntos
Preparações de Ação Retardada/química , Preparações Farmacêuticas/química , Poliésteres/química , Implantes Absorvíveis , Sistemas de Liberação de Medicamentos/métodos , Interações Hidrofóbicas e Hidrofílicas , Polietilenoglicóis/química , Álcool de Polivinil/química , Impressão Tridimensional
2.
Pharmaceutics ; 12(2)2020 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-32013052

RESUMO

Implantable drug delivery devices offer many advantages over other routes of drug delivery. Most significantly, the delivery of lower doses of drug, thus, potentially reducing side-effects and improving patient compliance. Three dimensional (3D) printing is a flexible technique, which has been subject to increasing interest in the past few years, especially in the area of medical devices. The present work focussed on the use of 3D printing as a tool to manufacture implantable drug delivery devices to deliver a range of model compounds (methylene blue, ibuprofen sodium and ibuprofen acid) in two in vitro models. Five implant designs were produced, and the release rate varied, depending on the implant design and the drug properties. Additionally, a rate controlling membrane was produced, which further prolonged the release from the produced implants, signalling the potential use of these devices for chronic conditions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...