Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Am Chem Soc ; 133(29): 11289-98, 2011 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-21644580

RESUMO

The dynamics of negative polaron and triplet exciton transport within a series of monodisperse platinum (Pt) acetylide oligomers is reported. The oligomers consist of Pt-acetylide repeats, [PtL(2)-C≡C-Ph-C≡C-](n) (where L = PBu(3) and Ph = 1,4-phenylene, n = 2, 3, 6, and 10), capped with naphthalene diimide (NDI) end groups. The Pt-acetylide segments are electro- and photoactive, and they serve as conduits for transport of electrons (negative polaron) and triplet excitons. The NDI end groups are relatively strong acceptors, serving as traps for the carriers. Negative polaron transport is studied by using pulse radiolysis/transient absorption at the Brookhaven National Laboratory Laser-Electron Accelerator Facility (LEAF). Electrons are rapidly attached to the oligomers, with some fraction initially residing upon the Pt-acetylide chains. The dynamics of transport are resolved by monitoring the spectral changes associated with transfer of electrons from the chain to the NDI end group. Triplet exciton transport is studied by femtosecond-picosecond transient absorption spectroscopy. Near-UV excitation leads to rapid production of triplet excitons localized on the Pt-acetylide chains. The excitons transport to the chain ends, where they are annihilated by charge separation with the NDI end group. The dynamics of triplet transport are resolved by transient absorption spectroscopy, taking advantage of the changes in spectra associated with decay of the triplet exciton and rise of the charge-separated state. The results indicate that negative polarons and excitons are transported rapidly, on average moving distances of ~3 nm in less than 200 ps. Analysis of the dynamics suggests diffusive transport by a site-to-site hopping mechanism with hopping times of ~27 ps for triplets and <10 ps for electrons.


Assuntos
Compostos Organoplatínicos/química , Difusão , Elétrons , Imidas/química , Modelos Moleculares , Naftalenos/química , Processos Fotoquímicos , Radiólise de Impulso
2.
J Org Chem ; 70(18): 7065-79, 2005 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-16122224

RESUMO

[reaction: see text] The synthesis and characterization of water-soluble singlet oxygen sensitizers with a phenylene-vinylene motif is presented. The principal motivation for this study was to better understand specific features of a water-soluble molecule that influence the photosensitized production of singlet oxygen upon nonlinear, two-photon excitation of that molecule. To achieve water solubility, sensitizers were synthesized with ionic as well as nonionic substituents. In the ionic approach, salts of N-methylated pyridine, benzothiazole, and 1-methyl-piperazine moieties were used, as were aryl-substituted sulfonic acid moieties. In the nonionic approach, aryl-substituted triethylene glycol moieties were used. Selected photophysical properties of the compounds synthesized were determined, including singlet oxygen quantum yields. Of the molecules examined, the most efficient singlet oxygen sensitizers had triethylene glycol units as the functional group that imparted water solubility. Molecules containing the ionic moieties did not make singlet oxygen in appreciable yield nor did they efficiently fluoresce. Rather, for these latter molecules, rapid charge-transfer-mediated non-radiative processes appear to dominate excited state deactivation.


Assuntos
Fótons , Fármacos Fotossensibilizantes/síntese química , Oxigênio Singlete/química , Estabilidade de Medicamentos , Fármacos Fotossensibilizantes/química , Fármacos Fotossensibilizantes/farmacologia , Espectrometria de Fluorescência
3.
J Org Chem ; 70(13): 5283-90, 2005 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-15960533

RESUMO

Reactions of diphenylnitrenium ion were examined using laser flash photolysis (LFP), product analysis, and computational modeling using density functional theory (DFT). In the absence of trapping agents, diphenylnitrenium ion cyclizes to form carbazole. On the basis of laser flash photolysis experiments and DFT calculations it is argued that this process is a concerted cyclization/proton transfer that forms the H-4a tautomer of carbazole. Additional LFP experiments and product studies show that diphenylnitrenium ion reacts with electron-rich arenes (e.g., N,N-dimethylaniline, diphenylamine, and carbazole) through an initial one-electron transfer. The radical intermediates formed in this step then couple to form dimeric products. Secondary reactions between the diphenylnitrenium ion and these dimers results in the formation of oligomeric materials.

4.
J Org Chem ; 70(4): 1134-46, 2005 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-15704945

RESUMO

[reaction: see text] Singlet molecular oxygen (a(1)Delta(g)) has been produced and optically monitored in time-resolved experiments upon nonlinear two-photon excitation of photosensitizers that contain triple bonds as an integral part of the chromophore. Both experiments and ab initio computations indicate that the photophysical properties of alkyne-containing sensitizers are similar to those in the alkene-containing analogues. Most importantly, however, in comparison to the analogue that contains double bonds, the sensitizer containing alkyne moieties is more stable against singlet-oxygen-mediated photooxygenation reactions. This increased stability can be advantageous, particularly with respect to two-photon singlet oxygen imaging experiments in which data are collected over comparatively long time periods.

5.
J Am Chem Soc ; 127(1): 255-69, 2005 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-15631475

RESUMO

Singlet molecular oxygen (a(1)Delta(g)) has been produced and optically detected in time-resolved experiments upon nonlinear two-photon excitation of a photosensitizer dissolved in water. For a given sensitizer, specific functional groups that impart water solubility and that give rise to larger two-photon absorption cross sections are, in many cases, not conducive to the production of singlet oxygen in high yield. This issue involves the competing influence of intramolecular charge transfer that can be pronounced in aqueous systems; more charge transfer in the chromophore facilitates two-photon absorption but decreases the singlet oxygen yield. This phenomenon is examined in a series of porphyrins and vinyl benzenes.

6.
Acc Chem Res ; 37(11): 894-901, 2004 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-15612679

RESUMO

The lowest excited electronic state of molecular oxygen, singlet molecular oxygen (a1Deltag), is an intermediate in many chemical and biological processes. Tools and methods have been developed to create singlet-oxygen-based optical images of heterogeneous samples that range from phase-separated polymers to biological cells. Such images provide unique insight into a variety of oxygen-dependent phenomena, including the photoinitiated death of cells.


Assuntos
Células , Microscopia/métodos , Polímeros/química , Oxigênio Singlete , Fótons
7.
J Am Chem Soc ; 124(14): 3567-77, 2002 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-11929245

RESUMO

An arylnitrenium ion, N-methyl-N-(4-biphenylyl)nitrenium ion, was generated through photolysis of 1-(N-methyl-N-4-biphenylyl)amino-2,4,6-trimethylpyridinium tetrafluoroborate, and its reactions with various donor-substituted arenes (e.g., 1,3,5-trimethoxybenzene, mesitylene, 1,4-dimethoxybenzene, hexamethylbenzene, etc.) were examined using product analysis and laser flash photolysis. In general, trapping of the short-lived nitrenium ion by the arenes leads to three types of products: (1) the parent amine, N-methyl-N-4-biphenylylamine; (2) an ortho-adduct, where the ring position ortho to the nitrenium ion center is bonded to the arene ring; and (3) an N-adduct, where the nitrenium ion nitrogen is bonded to the trap. Laser flash photolysis studies show that the rates of these trapping reactions vary from 10(4) to 10(9) M(-1) s(-1), depending on the structure of the arene trap. These trapping rate constants do not correlate with the one-electron oxidation potential of the arene, nor with the expected stability of a sigma-complex derived from direct electrophilic aromatic substitution. It is argued that the observed rate constants correspond to initial formation of a pi-complex between the arylnitrenium ion and the arene trap. This complex then forms the observed products.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...