Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Toxicol Chem ; 43(5): 999-1011, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38415806

RESUMO

Microplastic contamination is ubiquitous across the globe, even in remote locations. Still, the sources and pathways of microplastics to such locations are largely unknown. To investigate microplastic contamination in a semi-remote location, we measured microplastic concentrations in nine oligotrophic lakes within and around the International Institute for Sustainable Development-Experimental Lakes Area in northwestern Ontario, Canada. Our first objective was to establish ambient concentrations of microplastics in bottom sediments, surface water, and atmospheric deposition in semi-remote boreal lakes. Across all lakes, mean shallow and deep sediment microplastic concentrations, near-surface water microplastic concentrations from in situ filtering, and dry atmospheric microplastic deposition rates were 551 ± 354 particles kg-1, 177 ± 103 particles kg-1, 0.2 ± 0.3 particles L-1, and 0.4 ± 0.2 particles m-2 day-1, respectively. Our second objective was to investigate whether microplastic contamination of these lakes is driven by point sources including local runoff and direct anthropogenic inputs or nonpoint sources such as atmospheric deposition. Lakes were selected based on three levels of anthropogenic activity-low, medium, and high-though activity levels were minimal across all study lakes compared with highly populated areas. Whereas a positive correlation would indicate that point sources were a likely pathway, we observed no relationship between the level of anthropogenic activity and microplastic contamination of surface water. Moreover, the composition of microplastics in surface water and atmospheric deposition were similar, comprising mostly polyester and acrylic fibers. Together, these results suggest that atmospheric deposition may be the main pathway of microplastics to these remote boreal lakes. Environ Toxicol Chem 2024;43:999-1011. © 2024 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.


Assuntos
Monitoramento Ambiental , Lagos , Microplásticos , Poluentes Químicos da Água , Lagos/química , Microplásticos/análise , Poluentes Químicos da Água/análise , Monitoramento Ambiental/métodos , Ontário , Sedimentos Geológicos/química
2.
Environ Pollut ; 345: 123492, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38311156

RESUMO

Coastal areas are prone to plastic accumulation due to their proximity to land based sources. Coastal vegetated habitats (e.g., seagrasses, saltmarshes, mangroves) provide a myriad of ecosystem functions, such as erosion protection, habitat refuge, and carbon storage. The biological and physical factors that underlie these functions may provide an additional benefit: trapping of marine microplastics. While microplastics occurrence in coastal vegetated sediments is well documented, there is conflicting evidence on whether the presence of vegetation enhances microplastics trapping relative to bare sites and the factors that influence microplastic trapping remain understudied. We investigated how vegetation structure and microplastic type influences trapping in a simulated coastal wetland. Through a flume experiment, we measured the efficiency of microplastic trapping in the presence of branched and grassy vegetation and tested an array of microplastics that differ in shape, size, and polymer. We observed that the presence of vegetation did not affect the number of microplastics trapped but did affect location of deposition. Microplastic shape, rather than polymer, was the dominant factor in determining whether microplastics were retained in the sediment or adhered to the vegetation canopy. Across the canopy, microfibre concentrations decreased from the leading edge to the interior which suggests that even on a small-scale, vegetation has a filtering effect. The outcome of this study enriches our understanding of coastal vegetation as a microplastics sink and that differences among microplastics informs where they are most likely to accumulate within a biogenic canopy.


Assuntos
Microplásticos , Poluentes Químicos da Água , Plásticos/química , Áreas Alagadas , Ecossistema , Poluentes Químicos da Água/análise , Monitoramento Ambiental , Polímeros , Sedimentos Geológicos
3.
Environ Sci Technol ; 55(18): 12372-12382, 2021 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-34499472

RESUMO

The presence of microplastics within the gut of animals is well documented. Whether microplastics bioaccumulate in organisms and biomagnify in food webs remains unclear and relies on the ability of microplastics to translocate to other tissues. Here, we demonstrate the widespread presence of microplastics and other anthropogenic microparticles in the gastrointestinal tract, fillet, and livers of seven species of sportfish from Lake Simcoe, Ontario, Canada. Larger fish had a higher microplastic load compared to smaller fish, but the opposite trend was observed with translocated microplastics standardized by fish mass (i.e., smaller fish contained more translocated particles per gram wet weight than larger fish). Moreover, we observed no evidence of biomagnification as there was no significant relationship between the trophic level and total or translocated microplastics per individual. Overall, this suggests that microplastics are translocating, but that excretion of translocated particles or growth dilution may be occurring rather than bioaccumulation and biomagnification. Moreover, the assemblages of shapes and material types varied among tissues, suggesting that particle characteristics may predict biological fate. Our findings highlight the need for further work to understand the mechanisms of microplastic translocation and excretion and the implications for the dynamics of microplastics accumulation in food webs and human exposure.


Assuntos
Microplásticos , Poluentes Químicos da Água , Animais , Monitoramento Ambiental , Cadeia Alimentar , Humanos , Ontário , Plásticos , Poluentes Químicos da Água/análise
5.
Mar Pollut Bull ; 139: 40-45, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30686443

RESUMO

Microfibers are a common type of microplastic. One known source of microfibers to the environment is domestic laundering, which can release thousands of fibers into washing machine effluent with every wash. Here, we adapted existing methods to measure the length, count and weight of microfibers in laundry effluent. We used this method to test the efficacy of two technologies marketed to reduce microfiber emissions: the Cora Ball and Lint LUV-R filter. Both technologies significantly reduced the numbers of microfibers from fleece blankets in washing effluent. The Lint LUV-R captured an average of 87% of microfibers in the wash by count, compared to the Cora Ball which captured 26% by count. The Lint LUV-R also significantly reduced the total weight and average length of fibers in effluent. While further research is needed to understand other sources of microfiber emissions, these available technologies could be adopted to reduce emissions from laundering textiles.


Assuntos
Lavanderia/métodos , Plásticos/análise , Têxteis/análise , Águas Residuárias/química , Poluição da Água/prevenção & controle , Filtração , Lavanderia/normas , Modelos Teóricos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...