Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Biol Int ; 2014: 287430, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25197572

RESUMO

As larger-scale cloning projects become more prevalent, there is an increasing need for comparisons among high fidelity DNA polymerases used for PCR amplification. All polymerases marketed for PCR applications are tested for fidelity properties (i.e., error rate determination) by vendors, and numerous literature reports have addressed PCR enzyme fidelity. Nonetheless, it is often difficult to make direct comparisons among different enzymes due to numerous methodological and analytical differences from study to study. We have measured the error rates for 6 DNA polymerases commonly used in PCR applications, including 3 polymerases typically used for cloning applications requiring high fidelity. Error rate measurement values reported here were obtained by direct sequencing of cloned PCR products. The strategy employed here allows interrogation of error rate across a very large DNA sequence space, since 94 unique DNA targets were used as templates for PCR cloning. The six enzymes included in the study, Taq polymerase, AccuPrime-Taq High Fidelity, KOD Hot Start, cloned Pfu polymerase, Phusion Hot Start, and Pwo polymerase, we find the lowest error rates with Pfu, Phusion, and Pwo polymerases. Error rates are comparable for these 3 enzymes and are >10x lower than the error rate observed with Taq polymerase. Mutation spectra are reported, with the 3 high fidelity enzymes displaying broadly similar types of mutations. For these enzymes, transition mutations predominate, with little bias observed for type of transition.

2.
Plant J ; 79(3): 517-29, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24905498

RESUMO

The glycosyltransferases (GTs) are an important and functionally diverse family of enzymes involved in glycan and glycoside biosynthesis. Plants have evolved large families of GTs which undertake the array of glycosylation reactions that occur during plant development and growth. Based on the Carbohydrate-Active enZymes (CAZy) database, the genome of the reference plant Arabidopsis thaliana codes for over 450 GTs, while the rice genome (Oryza sativa) contains over 600 members. Collectively, GTs from these reference plants can be classified into over 40 distinct GT families. Although these enzymes are involved in many important plant specific processes such as cell-wall and secondary metabolite biosynthesis, few have been functionally characterized. We have sought to develop a plant GTs clone resource that will enable functional genomic approaches to be undertaken by the plant research community. In total, 403 (88%) of CAZy defined Arabidopsis GTs have been cloned, while 96 (15%) of the GTs coded by rice have been cloned. The collection resulted in the update of a number of Arabidopsis GT gene models. The clones represent full-length coding sequences without termination codons and are Gateway® compatible. To demonstrate the utility of this JBEI GT Collection, a set of efficient particle bombardment plasmids (pBullet) was also constructed with markers for the endomembrane. The utility of the pBullet collection was demonstrated by localizing all members of the Arabidopsis GT14 family to the Golgi apparatus or the endoplasmic reticulum (ER). Updates to these resources are available at the JBEI GT Collection website http://www.addgene.org/.


Assuntos
Genômica , Glicosiltransferases/metabolismo , Arabidopsis/enzimologia , Arabidopsis/genética , Arabidopsis/metabolismo , Parede Celular/metabolismo
3.
Plant Physiol ; 159(1): 12-26, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22430844

RESUMO

The plant Golgi plays a pivotal role in the biosynthesis of cell wall matrix polysaccharides, protein glycosylation, and vesicle trafficking. Golgi-localized proteins have become prospective targets for reengineering cell wall biosynthetic pathways for the efficient production of biofuels from plant cell walls. However, proteomic characterization of the Golgi has so far been limited, owing to the technical challenges inherent in Golgi purification. In this study, a combination of density centrifugation and surface charge separation techniques have allowed the reproducible isolation of Golgi membranes from Arabidopsis (Arabidopsis thaliana) at sufficiently high purity levels for in-depth proteomic analysis. Quantitative proteomic analysis, immunoblotting, enzyme activity assays, and electron microscopy all confirm high purity levels. A composition analysis indicated that approximately 19% of proteins were likely derived from contaminating compartments and ribosomes. The localization of 13 newly assigned proteins to the Golgi using transient fluorescent markers further validated the proteome. A collection of 371 proteins consistently identified in all replicates has been proposed to represent the Golgi proteome, marking an appreciable advancement in numbers of Golgi-localized proteins. A significant proportion of proteins likely involved in matrix polysaccharide biosynthesis were identified. The potential within this proteome for advances in understanding Golgi processes has been demonstrated by the identification and functional characterization of the first plant Golgi-resident nucleoside diphosphatase, using a yeast complementation assay. Overall, these data show key proteins involved in primary cell wall synthesis and include a mixture of well-characterized and unknown proteins whose biological roles and importance as targets for future research can now be realized.


Assuntos
Arabidopsis/metabolismo , Parede Celular/metabolismo , Complexo de Golgi/metabolismo , Membranas Intracelulares/metabolismo , Proteoma/isolamento & purificação , Apirase/genética , Apirase/metabolismo , Arabidopsis/anatomia & histologia , Arabidopsis/genética , Arabidopsis/fisiologia , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Sequência de Bases , Centrifugação com Gradiente de Concentração , Cromatografia Líquida , Ensaios Enzimáticos , Genes de Plantas , Teste de Complementação Genética , Glicosilação , Complexo de Golgi/ultraestrutura , Immunoblotting , Membranas Intracelulares/fisiologia , Membranas Intracelulares/ultraestrutura , Microscopia Eletrônica de Transmissão , Dados de Sequência Molecular , Células Vegetais/enzimologia , Células Vegetais/metabolismo , Proteoma/análise , Proteoma/metabolismo , Proteômica/métodos , Pirofosfatases/genética , Pirofosfatases/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
5.
Nature ; 461(7265): 814-8, 2009 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-19776739

RESUMO

Our understanding of human biology and disease is ultimately dependent on a complete understanding of the genome and its functions. The recent application of microarray and sequencing technologies to transcriptomics has changed the simplistic view of transcriptomes to a more complicated view of genome-wide transcription where a large fraction of transcripts emanates from unannotated parts of genomes, and underlined our limited knowledge of the dynamic state of transcription. Most of this broad body of knowledge was obtained indirectly because current transcriptome analysis methods typically require RNA to be converted to complementary DNA (cDNA) before measurements, even though the cDNA synthesis step introduces multiple biases and artefacts that interfere with both the proper characterization and quantification of transcripts. Furthermore, cDNA synthesis is not particularly suitable for the analysis of short, degraded and/or small quantity RNA samples. Here we report direct single molecule RNA sequencing without prior conversion of RNA to cDNA. We applied this technology to sequence femtomole quantities of poly(A)(+) Saccharomyces cerevisiae RNA using a surface coated with poly(dT) oligonucleotides to capture the RNAs at their natural poly(A) tails and initiate sequencing by synthesis. We observed transcript 3' end heterogeneity and polyadenylated small nucleolar RNAs. This study provides a path to high-throughput and low-cost direct RNA sequencing and achieving the ultimate goal of a comprehensive and bias-free understanding of transcriptomes.


Assuntos
RNA/análise , RNA/genética , Análise de Sequência de RNA/métodos , DNA Complementar/genética , Perfilação da Expressão Gênica/métodos , Oligorribonucleotídeos/genética , Reação em Cadeia da Polimerase , RNA/isolamento & purificação , RNA Fúngico/análise , RNA Fúngico/genética , RNA Fúngico/isolamento & purificação , Saccharomyces cerevisiae/genética , Moldes Genéticos
6.
Nat Methods ; 6(8): 593-5, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19620973

RESUMO

We synthesized reversible terminators with tethered inhibitors for next-generation sequencing. These were efficiently incorporated with high fidelity while preventing incorporation of additional nucleotides, and we used them to sequence canine bacterial artificial chromosomes in a single-molecule system that provided even coverage for over 99% of the region sequenced. This single-molecule approach generated high-quality sequence data without the need for target amplification and thus avoided concomitant biases.


Assuntos
Cromossomos Artificiais Bacterianos/química , DNA/química , Nucleotídeos/química , Análise de Sequência de DNA/métodos , Animais , Cromatografia Líquida de Alta Pressão , Cromossomos Artificiais Bacterianos/genética , Simulação por Computador , Cães , Nucleotídeos/genética , Sensibilidade e Especificidade , Especificidade por Substrato
7.
Mol Cell ; 27(4): 527-38, 2007 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-17707226

RESUMO

The replicase of all cells is thought to utilize two DNA polymerases for coordinated synthesis of leading and lagging strands. The DNA polymerases are held to DNA by circular sliding clamps. We demonstrate here that the E. coli DNA polymerase III holoenzyme assembles into a particle that contains three DNA polymerases. The three polymerases appear capable of simultaneous activity. Furthermore, the trimeric replicase is fully functional at a replication fork with helicase, primase, and sliding clamps; it produces slightly shorter Okazaki fragments than replisomes containing two DNA polymerases. We propose that two polymerases can function on the lagging strand and that the third DNA polymerase can act as a reserve enzyme to overcome certain types of obstacles to the replication fork.


Assuntos
DNA Polimerase III/metabolismo , DNA Polimerase Dirigida por DNA/metabolismo , Escherichia coli/enzimologia , Complexos Multienzimáticos/metabolismo , Replicação do DNA , DNA Polimerase Dirigida por DNA/química , Ativação Enzimática , Modelos Biológicos , Complexos Multienzimáticos/química , Ligação Proteica , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo
8.
J Biol Chem ; 282(35): 25903-16, 2007 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-17609212

RESUMO

Replication forks that collapse upon encountering a leading strand lesion are reactivated by a recombinative repair process called replication restart. Using rolling circle DNA substrates to model replication forks, we examine the fate of the helicase and both DNA polymerases when the leading strand polymerase is blocked. We find that the helicase continues over 0.5 kb but less than 3 kb and that the lagging strand DNA polymerase remains active despite its connection to a stalled leading strand enzyme. Furthermore, the blocked leading strand polymerase remains stably bound to the replication fork, implying that it must be dismantled from DNA in order for replication restart to initiate. Genetic studies have identified at least four gene products required for replication restart, RecF, RecO, RecR, and RecA. We find here that these proteins displace a stalled polymerase at a DNA template lesion. Implications of these results for replication fork collapse and recovery are discussed.


Assuntos
DNA Polimerase III/química , Replicação do DNA/fisiologia , Proteínas de Escherichia coli/química , Plasmídeos/química , Recombinases/química , Recombinação Genética/fisiologia , Sistema Livre de Células , DNA/química , DNA/metabolismo , DNA Polimerase III/metabolismo , Proteínas de Escherichia coli/metabolismo , Plasmídeos/metabolismo , Recombinases/metabolismo
9.
Mol Microbiol ; 60(2): 438-47, 2006 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-16573692

RESUMO

Inorganic polyphosphate is a biological macromolecule consisting of multiple phosphates linked by high-energy bonds. Polyphosphate occurs in cells from all domains of life, and is known to play roles in a diverse collection of cellular functions. Here we examine the relationship between polyphosphate and protein synthesis in Escherichia coli. We report that polyphosphate associates with E. coli ribosomes in vitro. Characterization of this interaction reveals that both long-chain and short-chain polyphosphates interact with the ribosome. Intact 70S ribosomes, as well as 50S and 30S subunits, display a specific interaction with polyphosphate that is mediated primarily by contacts with ribosomal proteins. Additionally, we examined functional consequences of a ppk mutation, which severely reduces levels of intracellular polyphosphate. Extracts from ppk mutants contain lower levels of polysomes than wild-type cells, suggesting a defect in mRNA utilization or the mRNA-ribosome interaction. Ribosomes from wild-type and ppk mutant cells were isolated, and their activities were compared using a polyU RNA in vitro translation assay. While rates of polyphenylalanine synthesis are similar, use of ribosomes from ppk cells results in a misincorporation rate about five times higher compared with the rate observed when ribosomes from wild-type cells are used. Mistranslation rates in vivo were measured directly, and ppk mutants displayed higher readthrough frequencies for two different stop codons. Taken together, these results indicate that polyphosphate plays an important role in maintaining optimal translation efficiency in vivo and in vitro.


Assuntos
Proteínas de Escherichia coli/genética , Escherichia coli/genética , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Polifosfatos/metabolismo , Polifosfatos/farmacologia , Polirribossomos/genética , Biossíntese de Proteínas/efeitos dos fármacos , Ribossomos/metabolismo , Escherichia coli/efeitos dos fármacos , Escherichia coli/metabolismo , Polirribossomos/metabolismo , Biossíntese de Proteínas/genética
10.
Mol Cell ; 19(6): 805-15, 2005 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-16168375

RESUMO

This report demonstrates that the beta sliding clamp of E. coli binds two different DNA polymerases at the same time. One is the high-fidelity Pol III chromosomal replicase and the other is Pol IV, a low-fidelity lesion bypass Y family polymerase. Further, polymerase switching on the primed template junction is regulated in a fashion that limits the action of the low-fidelity Pol IV. Under conditions that cause Pol III to stall on DNA, Pol IV takes control of the primed template. After the stall is relieved, Pol III rapidly regains control of the primed template junction from Pol IV and retains it while it is moving, becoming resistant to further Pol IV takeover events. These polymerase dynamics within the beta toolbelt complex restrict the action of the error-prone Pol IV to only the area on DNA where it is required.


Assuntos
DNA Polimerase III/metabolismo , DNA Polimerase beta/metabolismo , Replicação do DNA , Proteínas de Escherichia coli , Escherichia coli/genética , Conformação Proteica , Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Substâncias Macromoleculares , Modelos Moleculares , Ligação Proteica
11.
J Biol Chem ; 279(20): 21543-51, 2004 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-15014081

RESUMO

Replication forks are constantly subjected to events that lead to fork stalling, stopping, or collapse. Using a synthetic rolling circle DNA substrate, we demonstrate that a block to the lagging-strand polymerase does not compromise helicase or leading-strand polymerase activity. In fact, lagging-strand synthesis also continues. Thus, the blocked lagging-strand enzyme quickly dissociates from the block site and resumes synthesis on new primed sites. Furthermore, studies in which the lagging polymerase is continuously blocked show that the leading polymerase continues unabated even as it remains attached to the lagging-strand enzyme. Hence, upon encounter of a block to the lagging stand, the polymerases functionally uncouple yet remain physically associated. Further study reveals that naked single-stranded DNA results in disruption of a stalled polymerase from its beta-DNA substrate. Thus, as the replisome advances, the single-stranded DNA loop that accumulates on the lagging-strand template releases the stalled lagging-strand polymerase from beta after SSB protein is depleted. The lagging-strand polymerase is then free to continue Okazaki fragment production.


Assuntos
DNA Helicases/metabolismo , DNA Polimerase III/metabolismo , DNA/biossíntese , Replicação do DNA , DNA Circular/biossíntese , DNA Circular/química , DNA de Cadeia Simples/biossíntese , DNA de Cadeia Simples/metabolismo , Dimerização , Modelos Moleculares , Conformação Proteica , Moldes Genéticos
12.
EMBO J ; 21(12): 3148-59, 2002 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-12065427

RESUMO

Helicases are transferred to replication origins by helicase loading factors. The Escherichia coli DnaC and eukaryotic Cdc6/18 helicase loaders contain ATP sites and are both members of the AAA+ family. One might expect that ATP is required for helicase loading; however, this study on DnaC illustrates that ATP is not actually needed for DnaC to load helicase onto single-strand DNA (ssDNA). In fact, it seems to be a paradox that after transfer of helicase to DNA, DnaC-ATP inhibits helicase action. In addition, ATP is required for DnaC function at an early step in oriC replication in which ATP stimulates ssDNA binding by DnaC, leading to expansion of the ssDNA bubble at the origin. Two cofactors, ssDNA and DnaB, trigger hydrolysis of ATP, converting DnaC to the ADP form that no longer inhibits DnaB. These observations have led to the idea that DnaC is a 'dual' switch protein, where both the ATP and the ADP forms are sequentially required for replication. This dual switching process may underlie the sensitivity of DnaB to even small fluctuations in DnaC levels.


Assuntos
Difosfato de Adenosina/metabolismo , Trifosfato de Adenosina/metabolismo , Proteínas de Bactérias , DNA Helicases/metabolismo , Replicação do DNA , Proteínas de Escherichia coli/metabolismo , Sequência de Aminoácidos , Bacteriófagos/genética , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/genética , DNA de Cadeia Simples/genética , DNA de Cadeia Simples/metabolismo , Proteínas de Ligação a DNA/metabolismo , DnaB Helicases , Proteínas de Escherichia coli/química , Humanos , Modelos Genéticos , Dados de Sequência Molecular , Proteínas Nucleares/química , Proteínas Nucleares/genética , Origem de Replicação , Alinhamento de Sequência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...