Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Genes Brain Behav ; 12(2): 250-62, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22853648

RESUMO

The CRF (corticotropin-releasing factor) system is a key mediator of the stress response. Alterations in CRF signaling have been implicated in drug craving and ethanol consumption. The development of negative reinforcement via activation of brain stress systems has been proposed as a mechanism that contributes to alcohol dependence. Here, we isolated a gain-of-function allele of seb-3, a CRF receptor-like GPCR in Caenorhabditis elegans, providing an in vivo model of a constitutively activated stress system. We also characterized a loss-of-function allele of seb-3 and showed that SEB-3 positively regulates a stress response that leads to an enhanced active state of locomotion, behavioral arousal and tremor. SEB-3 also contributed to acute tolerance to ethanol and to the development of tremor during ethanol withdrawal. Furthermore, we found that a specific CRF(1) receptor antagonist reduced acute functional tolerance to ethanol in mice. These findings demonstrate functional conservation of the CRF system in responses to stress and ethanol in vertebrates and invertebrates.


Assuntos
Proteínas de Caenorhabditis elegans/fisiologia , Etanol/toxicidade , Resposta ao Choque Térmico/genética , Locomoção/genética , Receptores de Hormônio Liberador da Corticotropina/fisiologia , Receptores Acoplados a Proteínas G/fisiologia , Síndrome de Abstinência a Substâncias/genética , Alelos , Sequência de Aminoácidos , Animais , Nível de Alerta/genética , Caenorhabditis elegans/genética , Caenorhabditis elegans/fisiologia , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Etanol/sangue , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Dados de Sequência Molecular , Receptores de Hormônio Liberador da Corticotropina/genética , Receptores de Hormônio Liberador da Corticotropina/metabolismo , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Estresse Fisiológico , Tremor/genética
2.
Genes Brain Behav ; 8(6): 578-85, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19614755

RESUMO

Caenorhabditis elegans senses multiple environmental stimuli through sensory systems and rapidly changes its behaviors for survival. With a simple and well-characterized nervous system, C. elegans is a suitable animal model for studying behavioral plasticity. Previous studies have shown acute neurodepressive effects of ethanol on multiple behaviors of C. elegans similar to the effect of ethanol on other organisms. Caenorhabditis elegans also develops ethanol tolerance during continuous exposure to ethanol. In mammals, chronic ethanol exposure leads to ethanol tolerance as well as increased ethanol consumption. Ethanol preference is associated with the development of tolerance and may lead to the development of ethanol dependence. In this study, we show that C. elegans is a useful model organism for studying chronic effects of ethanol, including the development of ethanol preference. We designed a behavioral assay for testing ethanol preference after prolonged ethanol exposure. Despite baseline aversive responses to ethanol, animals show ethanol preference after 4 h of pre-exposure to ethanol and exhibit significantly enhanced preference for ethanol after a lifetime of ethanol exposure. The cat-2 and tph-1 mutant animals have defects in the synthetic enzymes for dopamine and serotonin, respectively. These mutants are deficient in the development of ethanol preference, indicating that dopamine and serotonin are required for this form of behavioral plasticity.


Assuntos
Consumo de Bebidas Alcoólicas/psicologia , Transtornos Relacionados ao Uso de Álcool/genética , Comportamento Animal/efeitos dos fármacos , Caenorhabditis elegans/efeitos dos fármacos , Comportamento de Escolha/fisiologia , Modelos Animais de Doenças , Etanol/administração & dosagem , Transtornos Relacionados ao Uso de Álcool/metabolismo , Transtornos Relacionados ao Uso de Álcool/psicologia , Animais , Comportamento Animal/fisiologia , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Comportamento de Escolha/efeitos dos fármacos , Condicionamento Psicológico/efeitos dos fármacos , Tolerância a Medicamentos
3.
Genes Brain Behav ; 7(6): 669-76, 2008 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-18397381

RESUMO

The mechanisms by which ethanol induces changes in behavior are not well understood. Here, we show that Caenorhabditis elegans loss-of-function mutations in the synaptic vesicle-associated RAB-3 protein and its guanosine triphosphate exchange factor AEX-3 confer resistance to the acute locomotor effects of ethanol. Similarly, mice lacking one or both copies of Rab3A are resistant to the ataxic and sedative effects of ethanol, and Rab3A haploinsufficiency increases voluntary ethanol consumption. These data suggest a conserved role of RAB-3-/RAB3A-regulated neurotransmitter release in ethanol-related behaviors.


Assuntos
Transtornos do Sistema Nervoso Induzidos por Álcool/genética , Transtornos do Sistema Nervoso Induzidos por Álcool/metabolismo , Química Encefálica/genética , Encéfalo/metabolismo , Proteínas rab3 de Ligação ao GTP/genética , Proteínas rab3 de Ligação ao GTP/metabolismo , Consumo de Bebidas Alcoólicas/genética , Consumo de Bebidas Alcoólicas/metabolismo , Consumo de Bebidas Alcoólicas/fisiopatologia , Transtornos do Sistema Nervoso Induzidos por Álcool/fisiopatologia , Animais , Ataxia/induzido quimicamente , Ataxia/genética , Ataxia/metabolismo , Comportamento Animal/efeitos dos fármacos , Comportamento Animal/fisiologia , Encéfalo/fisiopatologia , Caenorhabditis elegans , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Depressores do Sistema Nervoso Central/farmacologia , Transtornos da Consciência/induzido quimicamente , Transtornos da Consciência/genética , Transtornos da Consciência/metabolismo , Resistência a Medicamentos/genética , Etanol/farmacologia , Haplótipos/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteína rab3A de Ligação ao GTP/genética , Proteína rab3A de Ligação ao GTP/metabolismo
4.
Genes Brain Behav ; 3(5): 266-72, 2004 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-15344920

RESUMO

Memory and the expression of learned behaviors by an organism are often triggered by contextual cues that resemble those that were present when the initial learning occurred. In state-dependent learning, the cue eliciting a learned behavior is a neuroactive drug; behaviors initially learned during exposure to centrally acting compounds such as ethanol are subsequently recalled better if the drug stimulus is again present during testing. Although state-dependent learning is well documented in many vertebrate systems, the molecular mechanisms underlying state-dependent learning and other forms of contextual learning are not understood. Here we demonstrate and present a genetic analysis of state- dependent adaptation in Caenorhabditis elegans. C. elegans normally exhibits adaptation, or reduced behavioral response, to an olfactory stimulus after prior exposure to the stimulus. If the adaptation to the olfactory stimulus is acquired during ethanol administration, the adaptation is subsequently displayed only if the ethanol stimulus is again present. cat-1 and cat-2 mutant animals are defective in dopaminergic neuron signaling and are impaired in state dependency, indicating that dopamine functions in state-dependent adaptation in C. elegans.


Assuntos
Aprendizagem por Associação/efeitos dos fármacos , Caenorhabditis elegans/fisiologia , Aprendizagem por Discriminação/efeitos dos fármacos , Etanol/farmacologia , Rememoração Mental/efeitos dos fármacos , Olfato/efeitos dos fármacos , Adaptação Fisiológica/efeitos dos fármacos , Adaptação Fisiológica/genética , Animais , Aprendizagem por Associação/fisiologia , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Depressores do Sistema Nervoso Central/farmacologia , Quimiotaxia/genética , Quimiotaxia/fisiologia , Aprendizagem por Discriminação/fisiologia , Meio Ambiente , Rememoração Mental/fisiologia , Mutação/fisiologia , Receptores Dopaminérgicos/deficiência , Receptores Dopaminérgicos/genética , Olfato/fisiologia
5.
J Biol Chem ; 276(26): 23849-57, 2001 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-11274162

RESUMO

Seven genes in Saccharomyces cerevisiae are predicted to code for membrane-spanning proteins (designated AVT1-7) that are related to the neuronal gamma-aminobutyric acid-glycine vesicular transporters. We have now demonstrated that four of these proteins mediate amino acid transport in vacuoles. One protein, AVT1, is required for the vacuolar uptake of large neutral amino acids including tyrosine, glutamine, asparagine, isoleucine, and leucine. Three proteins, AVT3, AVT4, and AVT6, are involved in amino acid efflux from the vacuole and, as such, are the first to be shown directly to transport compounds from the lumen of an acidic intracellular organelle. This function is consistent with the role of the vacuole in protein degradation, whereby accumulated amino acids are exported to the cytosol. Protein AVT6 is responsible for the efflux of aspartate and glutamate, an activity that would account for their exclusion from vacuoles in vivo. Transport by AVT1 and AVT6 requires ATP for function and is abolished in the presence of nigericin, indicating that the same pH gradient can drive amino acid transport in opposing directions. Efflux of tyrosine and other large neutral amino acids by the two closely related proteins, AVT3 and AVT4, is similar in terms of substrate specificity to transport system h described in mammalian lysosomes and melanosomes. These findings suggest that yeast AVT transporter function has been conserved to control amino acid flux in vacuolar-like organelles.


Assuntos
Aminoácidos/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/fisiologia , Proteínas de Membrana Transportadoras , Transportadores de Ânions Orgânicos , Saccharomyces cerevisiae/metabolismo , Vacúolos/metabolismo , Sequência de Aminoácidos , Ácido Aspártico/metabolismo , Transporte Biológico , Proteínas de Transporte/genética , Proteínas de Transporte/fisiologia , Técnica Indireta de Fluorescência para Anticorpo , Proteínas da Membrana Plasmática de Transporte de GABA , Ácido Glutâmico/metabolismo , Membranas Intracelulares/metabolismo , Proteínas de Membrana/genética , Dados de Sequência Molecular , Filogenia , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae , Homologia de Sequência de Aminoácidos , Tirosina/metabolismo , Ácido gama-Aminobutírico/metabolismo
6.
Nature ; 389(6653): 870-6, 1997 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-9349821

RESUMO

Synaptic transmission involves the regulated exocytosis of vesicles filled with neurotransmitter. Classical transmitters are synthesized in the cytoplasm, and so must be transported into synaptic vesicles. Although the vesicular transporters for monoamines and acetylcholine have been identified, the proteins responsible for packaging the primary inhibitory and excitatory transmitters, gamma-aminobutyric acid (GABA) and glutamate remain unknown. Studies in the nematode Caenorhabditis elegans have implicated the gene unc-47 in the release of GABA. Here we show that the sequence of unc-47 predicts a protein with ten transmembrane domains, that the gene is expressed by GABA neurons, and that the protein colocalizes with synaptic vesicles. Further, a rat homologue of unc-47 is expressed by central GABA neurons and confers vesicular GABA transport in transfected cells with kinetics and substrate specificity similar to those previously reported for synaptic vesicles from the brain. Comparison of this vesicular GABA transporter (VGAT) with a vesicular transporter for monoamines shows that there are differences in the bioenergetic dependence of transport, and these presumably account for the differences in structure. Thus VGAT is the first of a new family of neurotransmitter transporters.


Assuntos
Caenorhabditis elegans/metabolismo , Proteínas de Transporte/metabolismo , Proteínas de Helminto/metabolismo , Proteínas de Membrana/metabolismo , Proteínas de Membrana Transportadoras , Transportadores de Ânions Orgânicos , Ácido gama-Aminobutírico/metabolismo , Sequência de Aminoácidos , Animais , Encéfalo/metabolismo , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans , Proteínas de Transporte/antagonistas & inibidores , Proteínas de Transporte/genética , Mapeamento Cromossômico , Clonagem Molecular , Proteínas da Membrana Plasmática de Transporte de GABA , Proteínas de Helminto/genética , Proteínas de Membrana/antagonistas & inibidores , Proteínas de Membrana/genética , Dados de Sequência Molecular , Mutação , Neurônios/metabolismo , Células PC12 , Ratos , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Homologia de Sequência de Aminoácidos , Vesículas Sinápticas/metabolismo , Proteínas Vesiculares de Transporte de Aminoácidos Inibidores
7.
Nature ; 364(6435): 334-7, 1993 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-8332190

RESUMO

gamma-Aminobutyric acid (GABA) neurotransmission is widespread in vertebrate and invertebrate nervous systems. Here we use a genetic approach to identify molecules specific to GABA function. On the basis of the known in vivo roles of GABAergic neurons in controlling behaviour of the nematode Caenorhabditis elegans, we identified mutants defective in GABA-mediated behaviours. Five genes are necessary either for GABAergic neuronal differentiation or for pre- or postsynaptic GABAergic function. The gene unc-30 is required for the differentiation of a specific type of GABAergic neuron, the type-D inhibitory motor neuron. The gene unc-25 is necessary for GABA expression and probably encodes the GABA biosynthetic enzyme glutamic acid decarboxylase. The genes unc-46 and unc-47 seem to be required for normal GABA release. Finally, the gene unc-49 is apparently necessary postsynaptically for the inhibitory effect of GABA on the body muscles and might encode a protein needed for the function of a GABAA-like receptor. Some of these genes are likely to encode previously unidentified proteins required for GABA function.


Assuntos
Caenorhabditis elegans/genética , Genes de Helmintos/fisiologia , Prolina/análogos & derivados , Ácido gama-Aminobutírico/fisiologia , Animais , Comportamento Animal/fisiologia , Caenorhabditis elegans/efeitos dos fármacos , Caenorhabditis elegans/fisiologia , Diferenciação Celular/genética , Muscimol/farmacologia , Mutação , Neurônios/citologia , Neurônios/fisiologia , Ácidos Nipecóticos/farmacologia , Ácido gama-Aminobutírico/metabolismo
8.
Nature ; 364(6435): 337-41, 1993 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-8332191

RESUMO

gamma-Aminobutyric acid (GABA) is the most abundant inhibitory neurotransmitter in vertebrates and invertebrates. GABA receptors are the target of anxiolytic, antiepileptic and antispasmodic drugs, as well as of commonly used insecticides. How does a specific neurotransmitter such as GABA control animal behaviour? To answer this question, we identified all neurons that react with antisera raised against the neurotransmitter GABA in the nervous system of the nematode Caenorhabditis elegans. We determined the in vivo functions of 25 of the 26 GABAergic neurons by killing these cells with a laser microbeam in living animals and by characterizing a mutant defective in GABA expression. On the basis of the ultrastructurally defined connectivity of the C. elegans nervous system, we deduced how these GABAergic neurons act to control the body and enteric muscles necessary for different behaviours. Our findings provide evidence that GABA functions as an excitatory as well as an inhibitory neurotransmitter.


Assuntos
Comportamento Animal/fisiologia , Caenorhabditis elegans/fisiologia , Neurônios/fisiologia , Ácido gama-Aminobutírico/fisiologia , Animais , Caenorhabditis elegans/química , Comportamento Alimentar/fisiologia , Locomoção/fisiologia , Neurônios Motores/fisiologia , Mutação , Neurônios/química , Ácido gama-Aminobutírico/análise
9.
Neuron ; 8(2): 307-22, 1992 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-1739461

RESUMO

The outgrowth of single axons through different cellular environments requires distinct sets of genes in the nematode C. elegans. Three genes are required for the pioneering circumferential outgrowth of identified motor neuron axons between the lateral hypodermal cell membrane and the basal lamina. Three other genes are required for the longitudinal outgrowth of these axons along preexisting axon bundles as well as for the fasciculation of axons within these neuron bundles. Five additional genes are required for circumferential outgrowth, longitudinal outgrowth, and fasciculation; mutations in three of these genes disrupt axon ultrastructure, suggesting that they function in axon formation rather than in axon guidance.


Assuntos
Axônios/fisiologia , Axônios/ultraestrutura , Caenorhabditis/fisiologia , Fasciculação/fisiopatologia , Genes/fisiologia , Animais , Movimento Celular/fisiologia , Fasciculação/genética , Imunofluorescência , Genes/genética , Crescimento/fisiologia , Microscopia Eletrônica , Neurônios Motores/fisiologia , Neurônios Motores/ultraestrutura , Mutação/genética , Sistema Nervoso/ultraestrutura , Fenômenos Fisiológicos do Sistema Nervoso
10.
Nature ; 336(6200): 638-46, 1988 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-3200316

RESUMO

Thirty-five genes define a pathway for the development of the hermaphrodite-specific neurons (HSNs) in Caenorhabditis elegans. Some of these genes affect only one HSN trait, demonstrating that HSN migration, axonal outgrowth and serotonin expression are mutually independent events in HSN development; others, some of which are regulatory, affect multiple HSN traits. Nearly all are pleiotropic, revealing that the genes specifying HSN development also function in the development of other cell types.


Assuntos
Caenorhabditis/embriologia , Transtornos do Desenvolvimento Sexual , Genes , Neurônios Motores/fisiologia , Animais , Axônios/fisiologia , Caenorhabditis/genética , Mutação , Fenótipo , Serotonina/fisiologia , Fatores Sexuais
11.
J Pharmacol Exp Ther ; 221(2): 416-20, 1982 May.
Artigo em Inglês | MEDLINE | ID: mdl-7077536

RESUMO

The i.p. injection of nicotine produced several changes in regional catecholamine concentrations in rat brain. These changes were blocked by the centrally active nicotinic antagonist mecamylamine, but not by the quaternary nicotinic antagonist hexamethonium. An examination of the effects of various cholinergic agents on hypothalamic epinephrine concentrations revealed several interesting findings. Central muscarinic antagonism or peripheral muscarinic agonism decreased hypothalamic epinephrine concentrations. The anticholinesterase physostigmine decreased hypothalamic epinephrine concentrations and this effect was blocked by the centrally acting nicotinic antagonist mecamylamine, but not by hexamethonium, scopolamine or methscopolamine. These findings indicate an interaction of cholinergic receptors, both nicotinic and muscarinic, with hypothalamic epinephrine.


Assuntos
Encéfalo/efeitos dos fármacos , Epinefrina/fisiologia , Hipotálamo/fisiologia , Receptores Colinérgicos/efeitos dos fármacos , Receptores Muscarínicos/efeitos dos fármacos , Receptores Nicotínicos/efeitos dos fármacos , Animais , Química Encefálica/efeitos dos fármacos , Dopamina/metabolismo , Epinefrina/metabolismo , Hipotálamo/efeitos dos fármacos , Masculino , Norepinefrina/metabolismo , Ratos , Ratos Endogâmicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...