Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Nature ; 587(7832): 145-151, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32908311

RESUMO

Nuclear compartments have diverse roles in regulating gene expression, yet the molecular forces and components that drive compartment formation remain largely unclear1. The long non-coding RNA Xist establishes an intra-chromosomal compartment by localizing at a high concentration in a territory spatially close to its transcription locus2 and binding diverse proteins3-5 to achieve X-chromosome inactivation (XCI)6,7. The XCI process therefore serves as a paradigm for understanding how RNA-mediated recruitment of various proteins induces a functional compartment. The properties of the inactive X (Xi)-compartment are known to change over time, because after initial Xist spreading and transcriptional shutoff a state is reached in which gene silencing remains stable even if Xist is turned off8. Here we show that the Xist RNA-binding proteins PTBP19, MATR310, TDP-4311 and CELF112 assemble on the multivalent E-repeat element of Xist7 and, via self-aggregation and heterotypic protein-protein interactions, form a condensate1 in the Xi. This condensate is required for gene silencing and for the anchoring of Xist to the Xi territory, and can be sustained in the absence of Xist. Notably, these E-repeat-binding proteins become essential coincident with transition to the Xist-independent XCI phase8, indicating that the condensate seeded by the E-repeat underlies the developmental switch from Xist-dependence to Xist-independence. Taken together, our data show that Xist forms the Xi compartment by seeding a heteromeric condensate that consists of ubiquitous RNA-binding proteins, revealing an unanticipated mechanism for heritable gene silencing.


Assuntos
Inativação Gênica , RNA Longo não Codificante/genética , Proteínas de Ligação a RNA/metabolismo , Animais , Proteínas CELF1/metabolismo , Linhagem Celular , Proteínas de Ligação a DNA/metabolismo , Feminino , Ribonucleoproteínas Nucleares Heterogêneas/metabolismo , Humanos , Hibridização in Situ Fluorescente , Masculino , Camundongos , Proteínas Associadas à Matriz Nuclear/metabolismo , Proteína de Ligação a Regiões Ricas em Polipirimidinas/metabolismo , Inativação do Cromossomo X/genética
3.
Genes Dev ; 31(3): 241-246, 2017 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-28270516

RESUMO

Chromobox homolog 3 (Cbx3/heterochromatin protein 1γ [HP1γ]) stimulates cell differentiation, but its mechanism is unknown. We found that Cbx3 binds to gene promoters upon differentiation of murine embryonic stem cells (ESCs) to neural progenitor cells (NPCs) and recruits the Mediator subunit Med26. RNAi knockdown of either Cbx3 or Med26 inhibits neural differentiation while up-regulating genes involved in mesodermal lineage decisions. Thus, Cbx3 and Med26 together ensure the fidelity of lineage specification by enhancing the expression of neural genes and down-regulating genes specific to alternative fates.


Assuntos
Diferenciação Celular , Linhagem da Célula , Proteínas Cromossômicas não Histona/metabolismo , Células-Tronco Embrionárias/citologia , Regulação da Expressão Gênica , Complexo Mediador/metabolismo , Células-Tronco Neurais/citologia , Animais , Células Cultivadas , Proteínas Cromossômicas não Histona/antagonistas & inibidores , Proteínas Cromossômicas não Histona/genética , Quinase 8 Dependente de Ciclina/genética , Quinase 8 Dependente de Ciclina/metabolismo , Células-Tronco Embrionárias/metabolismo , Complexo Mediador/genética , Mesoderma/citologia , Mesoderma/metabolismo , Camundongos , Células-Tronco Neurais/metabolismo , Regiões Promotoras Genéticas , RNA Interferente Pequeno/genética
4.
Cell ; 159(7): 1681-97, 2014 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-25525883

RESUMO

Reprogramming to iPSCs resets the epigenome of somatic cells, including the reversal of X chromosome inactivation. We sought to gain insight into the steps underlying the reprogramming process by examining the means by which reprogramming leads to X chromosome reactivation (XCR). Analyzing single cells in situ, we found that hallmarks of the inactive X (Xi) change sequentially, providing a direct readout of reprogramming progression. Several epigenetic changes on the Xi occur in the inverse order of developmental X inactivation, whereas others are uncoupled from this sequence. Among the latter, DNA methylation has an extraordinary long persistence on the Xi during reprogramming, and, like Xist expression, is erased only after pluripotency genes are activated. Mechanistically, XCR requires both DNA demethylation and Xist silencing, ensuring that only cells undergoing faithful reprogramming initiate XCR. Our study defines the epigenetic state of multiple sequential reprogramming intermediates and establishes a paradigm for studying cell fate transitions during reprogramming.


Assuntos
Reprogramação Celular , Epigênese Genética , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Cromossomo X/metabolismo , Animais , Proteínas Cdh1/metabolismo , Metilação de DNA , Proteínas de Homeodomínio/metabolismo , Camundongos , Proteína Homeobox Nanog , RNA Longo não Codificante/metabolismo
5.
Nat Cell Biol ; 15(7): 872-82, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23748610

RESUMO

Reprogramming of somatic cells into induced pluripotent stem cells (iPSCs) involves a marked reorganization of chromatin. To identify post-translational histone modifications that change in global abundance during this process, we have applied a quantitative mass-spectrometry-based approach. We found that iPSCs, compared with both the starting fibroblasts and a late reprogramming intermediate (pre-iPSCs), are enriched for histone modifications associated with active chromatin, and depleted for marks of transcriptional elongation and a subset of repressive modifications including H3K9me2/me3. Dissecting the contribution of H3K9 methylation to reprogramming, we show that the H3K9 methyltransferases Ehmt1, Ehmt2 and Setdb1 regulate global H3K9me2/me3 levels and that their depletion increases iPSC formation from both fibroblasts and pre-iPSCs. Similarly, we find that inhibition of heterochromatin protein-1γ (Cbx3), a protein known to recognize H3K9 methylation, enhances reprogramming. Genome-wide location analysis revealed that Cbx3 predominantly binds active genes in both pre-iPSCs and pluripotent cells but with a strikingly different distribution: in pre-iPSCs, but not in embryonic stem cells, Cbx3 associates with active transcriptional start sites, suggesting a developmentally regulated role for Cbx3 in transcriptional activation. Despite largely non-overlapping functions and the predominant association of Cbx3 with active transcription, the H3K9 methyltransferases and Cbx3 both inhibit reprogramming by repressing the pluripotency factor Nanog. Together, our findings demonstrate that Cbx3 and H3K9 methylation restrict late reprogramming events, and suggest that a marked change in global chromatin character constitutes an epigenetic roadblock for reprogramming.


Assuntos
Reprogramação Celular/genética , Proteínas Cromossômicas não Histona/genética , Metilação de DNA , Células-Tronco Embrionárias/metabolismo , Genômica , Histona-Lisina N-Metiltransferase/genética , Células-Tronco Pluripotentes Induzidas/metabolismo , Proteômica , Animais , Células Cultivadas , Cromatina/genética , Imunoprecipitação da Cromatina , Proteínas Cromossômicas não Histona/antagonistas & inibidores , Embrião de Mamíferos/citologia , Embrião de Mamíferos/metabolismo , Células-Tronco Embrionárias/citologia , Epigênese Genética , Feminino , Fibroblastos/citologia , Fibroblastos/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Histonas/metabolismo , Proteínas de Homeodomínio/antagonistas & inibidores , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Células-Tronco Pluripotentes Induzidas/citologia , Masculino , Camundongos , Proteína Homeobox Nanog , Processamento de Proteína Pós-Traducional , Sítio de Iniciação de Transcrição
6.
Cell Rep ; 2(5): 1061-7, 2012 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-23177621

RESUMO

A key feature of RNA polymerase II (Pol II) preinitiation complexes (PICs) is their ability to coordinate transcription initiation with chromatin modification and remodeling. To understand how this coordination is achieved, we employed extensive proteomic and mechanistic analyses to study the composition and assembly of PICs in HeLa cell and mouse embryonic stem cell (ESC) nuclear extracts. Strikingly, most of the machinery that is necessary for transcription initiation on chromatin is part of the PIC. The PIC is nearly identical between ESCs and HeLa cells and contains two major coactivator complexes: Mediator and SAGA. Genome-wide analysis of Mediator reveals that it has a close correlation with Pol II, TATA-binding protein, and messenger RNA levels and thus may play a major role in PIC assembly. Moreover, Mediator coordinates assembly of the Pol II initiation factors and chromatin machinery into a PIC in vitro, whereas SAGA acts after PIC assembly to allow transcription on chromatin.


Assuntos
Complexo Mediador/metabolismo , RNA Polimerase II/metabolismo , Transativadores/metabolismo , Animais , Linhagem Celular , Cromatina/metabolismo , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/metabolismo , Células HeLa , Humanos , Camundongos , Regiões Promotoras Genéticas , RNA Polimerase II/química , RNA Mensageiro/metabolismo , Proteína de Ligação a TATA-Box/genética , Proteína de Ligação a TATA-Box/metabolismo , Fator de Transcrição TFIID/genética , Fator de Transcrição TFIID/metabolismo , Transcrição Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...