Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Chem Neurosci ; 10(3): 1729-1743, 2019 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-30496686

RESUMO

Synaptic dysfunction is a pathological feature in many neurodegenerative disorders, including Alzheimer's disease, and synaptic loss correlates closely with cognitive decline. Histone deacetylases (HDACs) are involved in chromatin remodeling and gene expression and have been shown to regulate synaptogenesis and synaptic plasticity, thus providing an attractive drug discovery target for promoting synaptic growth and function. To date, HDAC inhibitor compounds with prosynaptic effects are plagued by known HDAC dose-limiting hematological toxicities, precluding their application to treating chronic neurologic conditions. We have identified a series of novel HDAC inhibitor compounds that selectively inhibit the HDAC-co-repressor of repressor element-1 silencing transcription factor (CoREST) complex while minimizing hematological side effects. HDAC1 and HDAC2 associate with multiple co-repressor complexes including CoREST, which regulates neuronal gene expression. We show that selectively targeting the CoREST co-repressor complex with the representative compound Rodin-A results in increased spine density and synaptic proteins, and improved long-term potentiation in a mouse model at doses that provide a substantial safety margin that would enable chronic treatment. The CoREST-selective HDAC inhibitor Rodin-A thus represents a promising therapeutic strategy in targeting synaptic pathology involved in neurologic disorders.


Assuntos
Inibidores de Histona Desacetilases/farmacologia , Histona Desacetilases/efeitos dos fármacos , Plasticidade Neuronal/efeitos dos fármacos , Sinapses/efeitos dos fármacos , Animais , Histona Desacetilases/metabolismo , Proteínas do Tecido Nervoso/efeitos dos fármacos , Proteínas do Tecido Nervoso/metabolismo , Neurônios/efeitos dos fármacos , Ratos Sprague-Dawley , Proteínas Repressoras/genética
2.
Bioorg Med Chem Lett ; 25(7): 1621-6, 2015 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-25708617

RESUMO

Early lead compounds in this gamma secretase modulator series were found to potently inhibit CYP3A4 and other human CYP isoforms increasing their risk of causing drug-drug-interactions (DDIs). Using structure-activity relationships and CYP3A4 structural information, analogs were developed that minimized this DDI potential. Three of these new analogs were further characterized by rat PK, rat PK/PD and rat exploratory toxicity studies resulting in selection of SPI-1865 (14) as a preclinical development candidate.


Assuntos
Azetidinas/farmacologia , Produtos Biológicos/farmacologia , Citocromo P-450 CYP3A/metabolismo , Esteroides/farmacologia , Animais , Azetidinas/química , Produtos Biológicos/química , Relação Dose-Resposta a Droga , Humanos , Modelos Moleculares , Conformação Molecular , Ratos , Ratos Sprague-Dawley , Esteroides/química , Relação Estrutura-Atividade
3.
Medicines (Basel) ; 2(3): 127-140, 2015 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-28930205

RESUMO

Alzheimer's disease is characterized by pathogenic oligomerization, aggregation, and deposition of amyloid beta peptide (Aß), resulting in severe neuronal toxicity and associated cognitive dysfunction. In particular, increases in the absolute or relative level of the major long form of Aß, Aß42, are associated with increased cellular toxicity and rapidity of disease progression. As a result of this observation, screening to identify potential drugs to reduce the level of Aß42 have been undertaken by way of modulating the proteolytic activity of the gamma secretase complex without compromising its action on other essential substrates such as Notch. In this review we summarize results from a program that sought to develop such gamma secretase modulators based on novel natural products identified in the extract of Actaea racemosa, the well-known botanical black cohosh. Following isolation of compound 1 (SPI-014), an extensive medicinal chemistry effort was undertaken to define the SAR of 1 and related semisynthetic compounds. Major metabolic and physicochemical liabilities in 1 were overcome including replacement of both the sugar and acetate moieties with more stable alternatives that improved drug-like properties and resulted in development candidate 25 (SPI-1865). Unanticipated off-target adrenal toxicity, however, precluded advancement of this series of compounds into clinical development.

4.
Alzheimers Res Ther ; 5(2): 19, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23597079

RESUMO

INTRODUCTION: Modulation of the gamma-secretase enzyme, which reduces the production of the amyloidogenic Aß42 peptide while sparing the production of other Aß species, is a promising therapeutic approach for the treatment of Alzheimer's disease. Satori has identified a unique class of small molecule gamma-secretase modulators (GSMs) capable of decreasing Aß42 levels in cellular and rodent model systems. The compound class exhibits potency in the nM range in vitro and is selective for lowering Aß42 and Aß38 while sparing Aß40 and total Aß levels. In vivo, a compound from the series, SPI-1865, demonstrates similar pharmacology in wild-type CD1 mice, Tg2576 mice and Sprague Dawley rats. METHODS: Animals were orally administered either a single dose of SPI-1865 or dosed for multiple days. Aß levels were measured using a sensitive plate-based ELISA system (MSD) and brain and plasma exposure of drug were assessed by LC/MS/MS. RESULTS: In wild-type mice using either dosing regimen, brain Aß42 and Aß38 levels were decreased upon treatment with SPI-1865 and little to no statistically meaningful effect on Aß40 was observed, reflecting the changes observed in vitro. In rats, brain Aß levels were examined and similar to the mouse studies, brain Aß42 and Aß38 were lowered. Comparable changes were also observed in the Tg2576 mice, where Aß levels were measured in brain as well as plasma and CSF. CONCLUSIONS: Taken together, these data indicate that SPI-1865 is orally bioavailable, brain penetrant, and effective at lowering Aß42 in a dose responsive manner. With this unique profile, the class of compounds represented by SPI-1865 may be a promising new therapy for Alzheimer's disease.

5.
J Neurosci Methods ; 213(1): 14-21, 2013 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-23219895

RESUMO

γ-Secretase modulators (GSM), which reduce amyloidogenic Aß(42) production while maintaining total Aß levels, and Notch-sparing γ-secretase inhibitors (GSIs) are promising therapies for the treatment of Alzheimer's Disease (AD). To have a safety margin for therapeutic use, GSMs and GSIs need to allow Notch intracellular domain (NICD) production, while preventing neurotoxic Aß peptide production. Typically, GSI and GSM effects on these substrates are determined using two different cell lines, one for the measurement of enzyme activity against each substrate. However, predicting selectivity for different substrates across cell systems may reduce the reliability of such ratios such that the in vitro data are not useful for predicting in vivo safety margins. This is especially concerning since the IC(50)'s of some GSIs vary depending upon the level of APP expression in a cell line. To circumvent this problem, we utilized the SUP-T1 cell line which expresses a truncated Notch receptor fragment that does not need sheddase cleavage to be a γ-secretase substrate. When combined with a sensitive method of measuring Aß production, this assay system allows both substrates to be measured simultaneously, reducing the potential to calculate imprecise selectivity margins. To demonstrate the value of this system, known GSIs and GSMs were examined in the SUP-T1 dual substrate assay. IC(50)'s were determined for both substrates and the in vitro selectivity margin was calculated. These data suggest using a single cell line is a more accurate prediction of the fold difference between NICD inhibition and Aß(42) lowering for therapeutically promising GSIs and GSMs.


Assuntos
Secretases da Proteína Precursora do Amiloide/antagonistas & inibidores , Precursor de Proteína beta-Amiloide/efeitos dos fármacos , Receptores Notch/efeitos dos fármacos , Alanina/análogos & derivados , Alanina/farmacologia , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/enzimologia , Doença de Alzheimer/metabolismo , Secretases da Proteína Precursora do Amiloide/análise , Secretases da Proteína Precursora do Amiloide/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Azepinas/farmacologia , Linhagem Celular , Inibidores Enzimáticos/farmacologia , Humanos , Oxidiazóis/farmacologia , Receptores Notch/metabolismo , Extração em Fase Sólida , Especificidade por Substrato , Sulfonamidas/farmacologia , Tiofenos/farmacologia
6.
ACS Chem Neurosci ; 3(11): 941-51, 2012 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-23205187

RESUMO

A screen of a library of synthetic drugs and natural product extracts identified a botanical extract that modulates the processing of amyloid precursor protein (APP) in cultured cells to produce a lowered ratio of amyloid-beta peptide (1-42) (Aß42) relative to Aß40. This profile is of interest as a potential treatment for Alzheimer's disease. The extract, from the black cohosh plant (Actaea racemosa), was subjected to bioassay guided fractionation to isolate active components. Using a combination of normal-phase and reverse-phase chromatography, a novel triterpene monoglycoside, 1, was isolated. This compound was found to have an IC(50) of 100 nM for selectively reducing the production of amyloidogenic Aß42 while having a much smaller effect on the production of Aß40 (IC(50) 6.3 µM) in cultured cells overexpressing APP. Using IP-MS methods, this compound was found to modulate the pool of total Aß produced by reducing the proportion of Aß42 while increasing the relative amounts of shorter and less amyloidogenic Aß37 and Aß39. Concentrations of 1 sufficient to lower levels of Aß42 substantially (up to 10 µM) did not significantly affect the processing of Notch or other aspects of APP processing. When 1 (10 µg) was administered to CD-1 normal mice intracerebroventricularly, the level of Aß42 in brain was reduced. Assays for off-target pharmacology and the absence of overt signs of toxicity in mice dosed with compound 1 suggest a comparatively selective pharmacology for this triterpenoid. Compound 1 represents a new lead for the development of potential treatments for Alzheimer's disease via modulation of gamma-secretase.


Assuntos
Secretases da Proteína Precursora do Amiloide/antagonistas & inibidores , Peptídeos beta-Amiloides/efeitos dos fármacos , Precursor de Proteína beta-Amiloide/efeitos dos fármacos , Cimicifuga/química , Extratos Vegetais/farmacologia , Raízes de Plantas/química , Precursor de Proteína beta-Amiloide/metabolismo , Animais , Encéfalo/efeitos dos fármacos , Cromatografia Líquida/métodos , Cromatografia de Fase Reversa/métodos , Glicosídeos/isolamento & purificação , Glicosídeos/farmacologia , Camundongos , Extratos Vegetais/química , Rizoma/química , Triterpenos/isolamento & purificação , Triterpenos/farmacologia
7.
J Med Chem ; 55(21): 9270-82, 2012 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-23030762

RESUMO

A series of triterpene-based γ-secretase modulators is optimized. An acetate present at the C24 position of the natural product was replaced with either carbamates or ethers to provide compounds with better metabolic stability. With one of those pharmacophores in place at C24, morpholines or carbamates were installed at the C3 position to refine the physicochemical properties of the analogues. This strategy gave compounds with low clearance and good distribution into the central nervous system (CNS) of CD-1 mice. Two of these compounds, 100 and 120, were tested for a pharmacodynamic effect in the strain and lowered brain Aß42 levels.


Assuntos
Secretases da Proteína Precursora do Amiloide/metabolismo , Produtos Biológicos/química , Triterpenos/química , Administração Oral , Peptídeos beta-Amiloides/metabolismo , Animais , Disponibilidade Biológica , Produtos Biológicos/farmacocinética , Produtos Biológicos/farmacologia , Barreira Hematoencefálica/metabolismo , Carbamatos/química , Carbamatos/farmacocinética , Carbamatos/farmacologia , Éteres/química , Éteres/farmacocinética , Éteres/farmacologia , Humanos , Camundongos , Microssomos Hepáticos/metabolismo , Fragmentos de Peptídeos/metabolismo , Permeabilidade , Ratos , Relação Estrutura-Atividade , Triterpenos/farmacocinética , Triterpenos/farmacologia
8.
Int J Alzheimers Dis ; 2012: 210756, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23320246

RESUMO

The Amyloid Hypothesis states that the cascade of events associated with Alzheimer's disease (AD)-formation of amyloid plaques, neurofibrillary tangles, synaptic loss, neurodegeneration, and cognitive decline-are triggered by Aß peptide dysregulation (Kakuda et al., 2006, Sato et al., 2003, Qi-Takahara et al., 2005). Since γ-secretase is critical for Aß production, many in the biopharmaceutical community focused on γ-secretase as a target for therapeutic approaches for Alzheimer's disease. However, pharmacological approaches to control γ-secretase activity are challenging because the enzyme has multiple, physiologically critical protein substrates. To lower amyloidogenic Aß peptides without affecting other γ-secretase substrates, the epsilon (ε) cleavage that is essential for the activity of many substrates must be preserved. Small molecule modulators of γ-secretase activity have been discovered that spare the ε cleavage of APP and other substrates while decreasing the production of Aß(42). Multiple chemical classes of γ-secretase modulators have been identified which differ in the pattern of Aß peptides produced. Ideally, modulators will allow the ε cleavage of all substrates while shifting APP cleavage from Aß(42) and other highly amyloidogenic Aß peptides to shorter and less neurotoxic forms of the peptides without altering the total Aß pool. Here, we compare chemically distinct modulators for effects on APP processing and in vivo activity.

9.
ACS Med Chem Lett ; 3(11): 908-13, 2012 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-24900406

RESUMO

The discovery of a new series of γ-secretase modulators is disclosed. Starting from a triterpene glycoside γ-secretase modulator that gave a very low brain-to-plasma ratio, initial SAR and optimization involved replacement of a pendant sugar with a series of morpholines. This modification led to two compounds with significantly improved central nervous system (CNS) exposure.

10.
Biochemistry ; 46(43): 12248-52, 2007 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-17918963

RESUMO

The crystal structures of rhodopsin depict the inactive conformation of rhodopsin in the dark. The 11-cis retinoid chromophore, the inverse agonist holding rhodopsin inactive, is well-resolved. Thr118 in helix 3 is the closest amino acid residue next to the 9-methyl group of the chromophore. The 9-methyl group of retinal facilitates the transition from an inactive metarhodopsin I to the active metarhodopsin II intermediate. In this study, a site-specific mutation of Thr118 to the bulkier Trp was made with the idea to induce an active conformation of the protein. The data indicate that such a mutation does indeed result in an active protein that depends on the presence of the ligand, specifically the 9-methyl group. As a result of this mutation, 11-cis retinal has been converted to an agonist. The apoprotein form of this mutant is no more active than the wild-type apoprotein. However, unlike wild-type rhodopsin, the covalent linkage of the ligand can be attacked by hydroxylamine in the dark. The combination of the Thr118Trp mutation and the 9-methyl group of the chromophore behaves as a "steric doorstop" holding the protein in an open and active conformation.


Assuntos
Engenharia de Proteínas , Rodopsina/química , Animais , Células COS , Bovinos , Chlorocebus aethiops , Modelos Moleculares , Mutação , Rodopsina/agonistas , Rodopsina/antagonistas & inibidores , Rodopsina/genética , Rodopsina/isolamento & purificação , Espectrofotometria Ultravioleta
11.
FEBS Lett ; 542(1-3): 142-6, 2003 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-12729914

RESUMO

Previous studies by Papermaster and coworkers introduced the use of rhodopsin-green fluorescent protein (rho-GFP) fusion proteins in the construction of transgenic Xenopus laevis with retinal rod photoreceptor cell-specific transgene expression [Moritz et al., J. Biol. Chem. 276 (2001) 28242-28251]. These pioneering studies have helped to develop the Xenopus system not only for use in the investigation of rhodopsin biosynthesis and targeting, but for studies of the phototransduction cascade as well. However, the rho-GFP fusion protein used in the earlier work had only 50% of the specific activity of wild-type rhodopsin for activation of transducin and only 10% of the activity of wild-type in rhodopsin kinase assays. While not a problem for the biosynthesis studies, this does present a problem for investigation of the phototransduction cascade. We report here an improved rhodopsin/EGFP fusion protein in which placement of the EGFP domain at the C-terminus of rhodopsin results in wild-type activity for activation of transducin, wild-type ability to serve as a substrate for rhodopsin kinase, and wild-type localization of the protein to the rod photoreceptor cell outer segment in transgenic X. laevis.


Assuntos
Proteínas do Olho , Proteínas Luminescentes/genética , Rodopsina/genética , Visão Ocular , Xenopus laevis/genética , Animais , Animais Geneticamente Modificados , Células COS , Receptor Quinase 1 Acoplada a Proteína G , Proteínas de Fluorescência Verde , Microscopia de Fluorescência , Proteínas Quinases/metabolismo , Proteínas Recombinantes de Fusão/análise , Proteínas Recombinantes de Fusão/química , Retina/química , Retina/citologia , Transducina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...