Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Mol Biol ; 349(2): 387-400, 2005 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-15890203

RESUMO

VceR, a member of the TetR family of transcriptional regulators, is a repressor of the vceCAB operon, which encodes a multidrug efflux pump in Vibrio cholerae. VceR binds to a 28 bp inverted-repeat within the vceR-vceC intergenic region and is dissociated from this site with CCCP, a pump substrate. The rate of the CCCP-induced conformational change in VceR was determined by stopped-flow fluorescence spectroscopy, revealing a highly co-operative process that occurs with a Hill coefficient of approximately 4. The apparent affinity for CCCP decreased in a linear manner with increasing concentrations of DNA, indicative of competition between the CCCP and DNA for binding to VceR. These data are consistent with an equilibrium between mutually exclusive conformations that are supported by the binding of DNA and CCCP to the N and C termini of VceR, respectively. Size-exclusion chromatography and dynamic light-scattering studies indicate that VceR exists predominantly as a dimer; however, a pair of dimers binds to the DNA. In order to account for the fact that VceR is a dimer in the absence of DNA but binds CCCP with a Hill co-efficient of 4, implying that it has at least four binding-sites, we propose that the VceR monomer possesses a pair of binding sites that can be simultaneously occupied by CCCP. Using a gene-reporter system and stopped-flow spectroscopy, we established that the equilibrium between free VceR and VceR-CCCP plays a critical role in controlling expression of the pump. The co-operative transition between these states allows the repressor to respond to relatively small changes in drug concentration. Thus, repression and induction can be readily switched about a critical drug concentration which will prove toxic to the cell.


Assuntos
Antibacterianos/farmacologia , Proteínas de Bactérias/metabolismo , DNA/metabolismo , Óperon/genética , Regiões Promotoras Genéticas/genética , Vibrio cholerae/efeitos dos fármacos , Vibrio cholerae/metabolismo , Proteínas de Bactérias/isolamento & purificação , Sequência de Bases , Ligação Competitiva , Carbonil Cianeto m-Clorofenil Hidrazona/metabolismo , DNA/genética , DNA Intergênico/genética , DNA Intergênico/metabolismo , Dimerização , Farmacorresistência Bacteriana , Dados de Sequência Molecular , Proteínas Repressoras/isolamento & purificação , Proteínas Repressoras/metabolismo , Especificidade por Substrato , Vibrio cholerae/genética
2.
J Biol Chem ; 280(15): 15307-14, 2005 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-15684414

RESUMO

Multidrug resistance in Gram-negative bacteria arises in part from the activities of tripartite drug efflux pumps. In the pathogen Vibrio cholerae, one such pump comprises the inner membrane proton antiporter VceB, the periplasmic adaptor VceA, and the outer membrane channel VceC. Here, we report the crystal structure of VceC at 1.8 A resolution. The trimeric VceC is organized in the crystal lattice within laminar arrays that resemble membranes. A well resolved detergent molecule within this array interacts with the transmembrane beta-barrel domain in a fashion that may mimic protein-lipopolysaccharide contacts. Our analyses of the external surfaces of VceC and other channel proteins suggest that different classes of efflux pumps have distinct architectures. We discuss the implications of these findings for mechanisms of drug and protein export.


Assuntos
Proteínas da Membrana Bacteriana Externa/química , Proteínas de Membrana/química , Vibrio cholerae/metabolismo , Sequência de Aminoácidos , Proteínas de Bactérias/química , Cristalografia por Raios X , Dimerização , Resistência Microbiana a Medicamentos , Bombas de Íon/química , Modelos Moleculares , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Conformação Proteica , Dobramento de Proteína , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Transporte Proteico , Prótons , Homologia de Sequência de Aminoácidos , Eletricidade Estática
3.
Curr Opin Pharmacol ; 4(5): 479-86, 2004 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-15351352

RESUMO

The active efflux of cytotoxic drugs mediated by multidrug transporters is the basis of multidrug resistance in prokaryotic and eukaryotic cells. Individual multidrug transporters can be extremely versatile, often exhibiting a staggering range of substrate specificity that can negate the effects of clinically relevant therapies. The effective treatment of bacterial, fungal and protozoan infections, along with certain cancer treatments, has been compromised by the presence of multidrug transporters. Traditionally, advances in the understanding of multidrug transporters have been made through biochemical analyses; more recently, however, fundamental advances have been made with the elucidation of several three dimensional structures of representative multidrug pumps. Biochemical and structural analysis of multidrug pumps could lead to the development of novel 'anti-efflux' therapies.


Assuntos
Transportadores de Cassetes de Ligação de ATP/antagonistas & inibidores , Antiporters/antagonistas & inibidores , Resistência a Múltiplos Medicamentos/efeitos dos fármacos , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/fisiologia , Transportadores de Cassetes de Ligação de ATP/química , Transportadores de Cassetes de Ligação de ATP/fisiologia , Antiporters/fisiologia , Cristalografia por Raios X , Resistência a Múltiplos Medicamentos/fisiologia , Humanos , Modelos Moleculares , Trocadores de Sódio-Hidrogênio/antagonistas & inibidores , Trocadores de Sódio-Hidrogênio/fisiologia
4.
Biochem J ; 376(Pt 2): 313-38, 2003 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-13678421

RESUMO

Resistance to therapeutic drugs encompasses a diverse range of biological systems, which all have a human impact. From the relative simplicity of bacterial cells, fungi and protozoa to the complexity of human cancer cells, resistance has become problematic. Stated in its simplest terms, drug resistance decreases the chance of providing successful treatment against a plethora of diseases. Worryingly, it is a problem that is increasing, and consequently there is a pressing need to develop new and effective classes of drugs. This has provided a powerful stimulus in promoting research on drug resistance and, ultimately, it is hoped that this research will provide novel approaches that will allow the deliberate circumvention of well understood resistance mechanisms. A major mechanism of resistance in both microbes and cancer cells is the membrane protein-catalysed extrusion of drugs from the cell. Resistant cells exploit proton-driven antiporters and/or ATP-driven ABC (ATP-binding cassette) transporters to extrude cytotoxic drugs that usually enter the cell by passive diffusion. Although some of these drug efflux pumps transport specific substrates, many are transporters of multiple substrates. These multidrug pumps can often transport a variety of structurally unrelated hydrophobic compounds, ranging from dyes to lipids. If we are to nullify the effects of efflux-mediated drug resistance, we must first of all understand how these efflux pumps can accommodate a diverse range of compounds and, secondly, how conformational changes in these proteins are coupled to substrate translocation. These are key questions that must be addressed. In this review we report on the advances that have been made in understanding the structure and function of drug efflux pumps.


Assuntos
Resistência a Medicamentos , Proteínas de Membrana Transportadoras/química , Proteínas de Membrana Transportadoras/fisiologia , Transportadores de Cassetes de Ligação de ATP/química , Transportadores de Cassetes de Ligação de ATP/fisiologia , Trifosfato de Adenosina/metabolismo , Antiporters/química , Antiporters/fisiologia , Sítios de Ligação , Transporte Biológico , Modelos Moleculares , Sódio/metabolismo
5.
Trends Microbiol ; 11(1): 21-9, 2003 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-12526851

RESUMO

Our understanding of the exact mechanisms used by the transmembrane protein pumps that confer cellular resistance to cytotoxic drugs has improved enormously with the recent determination of the structures of three Escherichia coli transporters, two belonging to the ATP-binding cassette (ABC) superfamily and one to the resistance-nodulation-cell division (RND) family. Although these studies do not provide an insight into how drug pumps can recognize several structurally unrelated drugs, important advances have been also made in this area. Information on the molecular basis of multidrug recognition has been provided by determining the structure of transcriptional regulators that can bind, often structurally unrelated, cytotoxic drugs and control the expression of drug pumps.


Assuntos
Transportadores de Cassetes de Ligação de ATP/química , Transportadores de Cassetes de Ligação de ATP/fisiologia , Proteínas de Bactérias/química , Proteínas de Bactérias/fisiologia , Proteínas de Transporte , Farmacorresistência Bacteriana , Proteínas de Escherichia coli , Proteínas de Membrana/química , Proteínas de Membrana/fisiologia , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Transportadores de Cassetes de Ligação de ATP/metabolismo , Antibacterianos/administração & dosagem , Antibacterianos/farmacocinética , Antibacterianos/uso terapêutico , Bactérias/efeitos dos fármacos , Bactérias/metabolismo , Proteínas de Bactérias/metabolismo , Transporte Biológico Ativo , Resistência a Múltiplos Medicamentos , Humanos , Proteínas de Membrana Transportadoras/metabolismo , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo , Conformação Proteica , Relação Estrutura-Atividade
6.
Trends Microbiol ; 10(10 Suppl): S8-14, 2002.
Artigo em Inglês | MEDLINE | ID: mdl-12377562

RESUMO

Microorganisms and viruses have developed numerous resistance mechanisms that enable them to evade the effect of antimicrobials and antivirals. As a result, many have become resistant to almost every available means of treatment. This problem, although not new, is becoming increasingly acute and it is now clear that a fundamental understanding of the mechanisms that microbes and viruses deploy in the development of resistance is essential if we are to gain new insights into ways to combat this problem.


Assuntos
Farmacorresistência Bacteriana , Farmacorresistência Viral , Antibacterianos/metabolismo , Antibacterianos/farmacocinética , Bactérias/efeitos dos fármacos , Bactérias/enzimologia , Bactérias/patogenicidade , Permeabilidade da Membrana Celular/fisiologia , Farmacorresistência Bacteriana/genética , Farmacorresistência Bacteriana/imunologia , Farmacorresistência Viral/genética , Farmacorresistência Viral/imunologia , Proteínas de Membrana Transportadoras/classificação , Proteínas de Membrana Transportadoras/fisiologia , Modelos Biológicos , Vírus/efeitos dos fármacos , Vírus/enzimologia , Vírus/patogenicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...