Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Elife ; 122023 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-37589453

RESUMO

Age-associated DNA methylation in blood cells convey information on health status. However, the mechanisms that drive these changes in circulating cells and their relationships to gene regulation are unknown. We identified age-associated DNA methylation sites in six purified blood-borne immune cell types (naive B, naive CD4+ and CD8+ T cells, granulocytes, monocytes, and NK cells) collected from healthy individuals interspersed over a wide age range. Of the thousands of age-associated sites, only 350 sites were differentially methylated in the same direction in all cell types and validated in an independent longitudinal cohort. Genes close to age-associated hypomethylated sites were enriched for collagen biosynthesis and complement cascade pathways, while genes close to hypermethylated sites mapped to neuronal pathways. In silico analyses showed that in most cell types, the age-associated hypo- and hypermethylated sites were enriched for ARNT (HIF1ß) and REST transcription factor (TF) motifs, respectively, which are both master regulators of hypoxia response. To conclude, despite spatial heterogeneity, there is a commonality in the putative regulatory role with respect to TF motifs and histone modifications at and around these sites. These features suggest that DNA methylation changes in healthy aging may be adaptive responses to fluctuations of oxygen availability.


Assuntos
Envelhecimento , Linfócitos T CD8-Positivos , Humanos , Envelhecimento/genética , Ativação do Complemento , Metilação de DNA , Epigênese Genética
2.
Immun Ageing ; 19(1): 54, 2022 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-36368988

RESUMO

BACKGROUND: Cytomegalovirus (CMV) infection leads to effector memory CD8+ T cell expansion and is associated with immune dysfunction in older adults. However, the molecular alterations of CMV-specific CD8+ T cells in CMV infected healthy young and middle-aged adults has not been fully characterized. RESULTS: We compared CD8+ T cells specific for a CMV epitope (pp65495-503, NLV) and an influenza A virus (IAV) epitope (M158-66, GIL) from the same young and middle-aged healthy adults with serum positive for anti-CMV IgG. Compared to the IAV-specific CD8+ T cells, CMV-specific CD8+ T cells contained more differentiated effector memory (TEM and TEMRA) cells. Isolated CMV-specific central memory (TCM) but not naïve (TN) cells had a significant reduced activation-induced expansion in vitro compared to their IAV-specific counterparts. Furthermore, we found that CD70 expression was reduced in CMV-specific CD28+CD8+ TCM and that CD70+ TCM had better expansion in vitro than did CD70- TCM. Mechanistically, we showed that CD70 directly enhanced MAPK phosphorylation and CMV-specific CD8+ TCM cells had a reduced MAPK signaling upon activation. Lastly, we showed that age did not exacerbate reduced CD70 expression in CMV- specific CD8+ TCM cells. CONCLUSION: Our findings showed that CMV infection causes mild expansion of CMV-NLV-specific CD8+ T cells, reduced CD70 expression and signaling, and proliferation of CMV-NLV-specific CD8+ TCM cells in young and middle-aged healthy adults and revealed an age-independent and CMV infection-specific impact on CD8+ memory T cells.

4.
Immunity ; 54(11): 2465-2480.e5, 2021 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-34706222

RESUMO

Epigenetic reprogramming underlies specification of immune cell lineages, but patterns that uniquely define immune cell types and the mechanisms by which they are established remain unclear. Here, we identified lineage-specific DNA methylation signatures of six immune cell types from human peripheral blood and determined their relationship to other epigenetic and transcriptomic patterns. Sites of lineage-specific hypomethylation were associated with distinct combinations of transcription factors in each cell type. By contrast, sites of lineage-specific hypermethylation were restricted mostly to adaptive immune cells. PU.1 binding sites were associated with lineage-specific hypo- and hypermethylation in different cell types, suggesting that it regulates DNA methylation in a context-dependent manner. These observations indicate that innate and adaptive immune lineages are specified by distinct epigenetic mechanisms via combinatorial and context-dependent use of key transcription factors. The cell-specific epigenomics and transcriptional patterns identified serve as a foundation for future studies on immune dysregulation in diseases and aging.


Assuntos
Metilação de DNA , Epigênese Genética , Epigenômica , Regulação da Expressão Gênica , Imunidade , Fatores de Transcrição/metabolismo , Transcriptoma , Epigenômica/métodos , Humanos , Sistema Imunitário/citologia , Sistema Imunitário/imunologia , Sistema Imunitário/metabolismo , Fatores de Transcrição/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...