Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2023 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-38106154

RESUMO

Generating animal models for individual patients within clinically-useful timeframes holds great potential toward enabling personalized medicine approaches for genetic epilepsies. The ability to rapidly incorporate patient-specific genomic variants into model animals recapitulating elements of the patient's clinical manifestations would enable applications ranging from validation and characterization of pathogenic variants to personalized models for tailoring pharmacotherapy to individual patients. Here, we demonstrate generation of an animal model of an individual epilepsy patient with an ultra-rare variant of the NMDA receptor subunit GRIN2A, without the need for germline transmission and breeding. Using in utero prime editing in the brain of wild-type mice, our approach yielded high in vivo editing precision and induced frequent, spontaneous seizures which mirrored specific elements of the patient's clinical presentation. Leveraging the speed and versatility of this approach, we introduce PegAssist, a generalizable workflow to generate bedside-to-bench animal models of individual patients within weeks. The capability to produce individualized animal models rapidly and cost-effectively will reduce barriers to access for precision medicine, and will accelerate drug development by offering versatile in vivo platforms to identify compounds with efficacy against rare neurological conditions.

2.
J Physiol ; 600(9): 2189-2202, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35332539

RESUMO

Inhibitory fast-spiking interneurons in the dorsal striatum regulate actions and action strategies, including habits. Fast-spiking interneurons are widely believed to synchronize their firing due to the electrical synapses formed between these neurons. However, neuronal modelling data suggest convergent cortical input may also drive synchrony in fast-spiking interneuron networks. To better understand how fast-spiking interneuron synchrony arises, we performed dual whole-cell patch clamp electrophysiology experiments to inform a simple Bayesian network modelling cortico-fast-spiking interneuron circuitry. Dual whole-cell patch clamp electrophysiology revealed that while responsivity to corticostriatal input activation was high in fast-spiking interneurons, few of these neurons exhibited electrical coupling in adult mice. In simulations of a cortico-fast-spiking interneuron network informed by these data, the degree of glutamatergic cortical convergence onto fast-spiking interneurons significantly increased fast-spiking interneuron synchronization while manipulations of electrical coupling between these neurons exerted relatively little impact. These results suggest that the primary source of functional coordination of fast-spiking interneuron activity in adulthood arises from convergent corticostriatal input activation. KEY POINTS: Electrical synapses between striatal fast-spiking interneurons in adult mice occur in ∼8% of assayed pairs. Coincident, convergent cortical input onto fast-spiking interneurons significantly contributes to fast-spiking interneuron synchrony. Electrical synapses between fast-spiking interneurons provide only minor enhancement of fast-spiking interneuron synchrony. These results suggest a mechanism by which adult mouse fast-spiking interneurons of the striatum synchronize in the face of declining expression of the electrical synapse-forming connexin-36 protein.


Assuntos
Corpo Estriado , Interneurônios , Potenciais de Ação/fisiologia , Animais , Teorema de Bayes , Corpo Estriado/fisiologia , Interneurônios/fisiologia , Camundongos , Neurônios
3.
Neuron ; 109(9): 1416-1418, 2021 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-33957068

RESUMO

In this issue of Neuron, Soria-Gomez et al. (2021) investigate whether activation of the type 1 cannabinoid receptor at specific subcellular locations within a single neural circuit produces multimodal behavior. Their results demonstrate that location matters: striatonigral mitochondrial CB1 drives catalepsy while striatonigral plasma membrane CB1 receptors enable antinociception.


Assuntos
Canabinoides , Animais , Comportamento Animal , Dronabinol
4.
Addict Biol ; 26(3): e12961, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-32820590

RESUMO

Individuals suffering from substance use disorder often experience relapse events that are attributed to drug craving. Insular cortex (IC) function is implicated in processing drug-predictive cues and is thought to be a critical substrate for drug craving, but the downstream neural circuit effectors of the IC that mediate reward processing are poorly described. Here, we uncover the functional connectivity of an IC projection to the ventral bed nucleus of the stria terminalis (vBNST), a portion of the extended amygdala that has been previously shown to modulate dopaminergic activity within the ventral tegmental area (VTA), and investigate the role of this pathway in reward-related behaviors. We utilized ex vivo slice electrophysiology and in vivo optogenetics to examine the functional connectivity of the IC-vBNST projection and bidirectionally control IC-vBNST terminals in various reward-related behavioral paradigms. We hypothesized that the IC recruits mesolimbic dopamine signaling by activating VTA-projecting, vBNST neurons. Using slice electrophysiology, we found that the IC sends a glutamatergic projection onto vBNST-VTA neurons. Photoactivation of IC-vBNST terminals was sufficient to reinforce behavior in a dopamine-dependent manner. Moreover, silencing the IC-vBNST projection was aversive and resulted in anxiety-like behavior without affecting food consumption. This work provides a potential mechanism by which the IC processes exteroceptive triggers that are predictive of reward.


Assuntos
Comportamento Animal/fisiologia , Córtex Cerebral/fisiologia , Dopamina/metabolismo , Núcleos Septais/fisiologia , Tonsila do Cerebelo/fisiologia , Animais , Ansiedade/fisiopatologia , Feminino , Humanos , Masculino , Camundongos Endogâmicos C57BL , Recompensa , Área Tegmentar Ventral/fisiologia
5.
Neuropsychopharmacology ; 44(6): 1114-1122, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30758322

RESUMO

The nucleus accumbens is a critical integration center for reward-related circuitry and is comprised primarily of medium spiny projection neurons. The dynamic balance of excitation and inhibition onto medium spiny neurons determines the output of this structure. While nucleus accumbens excitatory synaptic plasticity is well-characterized, inhibitory synaptic plasticity mechanisms and their potential relevance to shaping motivated behaviors is poorly understood. Here we report the discovery of long-term depression of inhibitory synaptic transmission in the mouse nucleus accumbens core. This long-term depression is postsynaptically expressed, tropomyosin kinase B (TrkB) receptor-mediated, and augmented in the presence of ethanol. Our findings support the emerging view that TrkB signaling regulates inhibitory synaptic plasticity and suggest this mechanism in the nucleus accumbens as a target for ethanol modulation of reward.


Assuntos
Depressores do Sistema Nervoso Central/farmacologia , Etanol/farmacologia , Depressão Sináptica de Longo Prazo , Glicoproteínas de Membrana/metabolismo , Inibição Neural , Núcleo Accumbens , Proteínas Tirosina Quinases/metabolismo , Transdução de Sinais , Animais , Feminino , Depressão Sináptica de Longo Prazo/efeitos dos fármacos , Depressão Sináptica de Longo Prazo/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Inibição Neural/efeitos dos fármacos , Inibição Neural/fisiologia , Núcleo Accumbens/efeitos dos fármacos , Núcleo Accumbens/fisiologia , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia
6.
Neuropharmacology ; 144: 1-8, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30321611

RESUMO

Decades of work in Aplysia californica established the general rule that principles of synaptic plasticity and their molecular mechanisms are evolutionarily conserved from mollusks to mammals. However, an exquisitely sensitive, activity-dependent homosynaptic mechanism that protects against the depression of neurotransmitter release in Aplysia sensory neuron terminals has, to date, not been uncovered in other animals, including mammals. Here, we discover that depression at a mammalian synapse that is implicated in habit formation and habit learning acceleration by ethanol, the fast-spiking interneuron (FSI) to medium spiny principal projection neuron (MSN) synapse of the dorsolateral striatum, is subject to this type of synaptic protection. We show that this protection against synaptic depression is calcium- and PDZ domain interaction-dependent. These findings support activity dependent protection against synaptic depression as an Aplysia-like synaptic switch in mammals that may represent a leveraging point for treating alcohol use disorders.


Assuntos
Depressores do Sistema Nervoso Central/farmacologia , Corpo Estriado/fisiologia , Etanol/farmacologia , Hábitos , Plasticidade Neuronal/fisiologia , Sinapses/fisiologia , Animais , Aplysia/fisiologia , Cálcio/metabolismo , Corpo Estriado/citologia , Corpo Estriado/efeitos dos fármacos , Feminino , Masculino , Camundongos Transgênicos , Inibição Neural/efeitos dos fármacos , Inibição Neural/fisiologia , Plasticidade Neuronal/efeitos dos fármacos , Neurônios/citologia , Neurônios/efeitos dos fármacos , Neurônios/fisiologia , Domínios PDZ , Proteína Quinase C/metabolismo , Sinapses/efeitos dos fármacos , Técnicas de Cultura de Tecidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...