Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Glia ; 59(6): 981-96, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21456043

RESUMO

Chondroitin sulfate-4,6 (CS-E) glycosaminoglycan (GAG) upregulation in astroglial scars is a major contributor to chondroitin sulfate proteoglycan (CSPG)-mediated inhibition [Gilbert et al. (2005) Mol Cell Neurosci 29:545­558]. However, the role of N-acetylgalactosamine 4-sulfate 6-O-sulfotransferase (GalNAc4S6ST) catalyzed sulfation of CS-E, and its contribution to CSPG-mediated inhibition of CNS regeneration remains to be fully elucidated. Here, we used in situ hybridization to show localized upregulation of GalNAc4S6ST mRNA after CNS injury. Using in vitro spot assays with immobilized CS-E, we demonstrate dose-dependent inhibition of rat embryonic day 18 (E18) cortical neurons. To determine whether selective downregulation of CS-E affected the overall inhibitory character of extracellular matrix produced by reactive astrocytes, single [against (chondroitin 4) sulfotransferase 11 (C4ST1) or GalNAc4S6ST mRNA] or double [against C4ST1 and GalNAc4S6ST mRNA] siRNA treatments were conducted and assayed using quantitative real-time polymerase chain reaction and high-performance liquid chromatography to confirm the specific downregulation of CS-4S GAG (CS-A) and CS-E. Spot and Bonhoeffer stripe assays using astrocyte-conditioned media from siRNA-treated rat astrocytes showed a significant decrease in inhibition of neuronal attachment and neurite extensions when compared with untreated and TGF-treated astrocytes. These findings reveal that selective attenuation of CS-E via siRNA targeting of GalNAc4S6ST significantly mitigates CSPG-mediated inhibition of neurons, potentially offering a novel intervention strategy for CNS injury.


Assuntos
Astrócitos/metabolismo , Córtex Cerebral/enzimologia , Proteoglicanas de Sulfatos de Condroitina/fisiologia , Neurônios/metabolismo , Sulfotransferases/antagonistas & inibidores , Sulfotransferases/biossíntese , Animais , Animais Recém-Nascidos , Astrócitos/enzimologia , Células Cultivadas , Proteoglicanas de Sulfatos de Condroitina/genética , Regulação para Baixo/genética , Marcação de Genes/métodos , Masculino , Inibição Neural/genética , Neurônios/enzimologia , Ratos , Ratos Sprague-Dawley , Sulfotransferases/genética
2.
PLoS One ; 6(1): e16135, 2011 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-21283639

RESUMO

BACKGROUND: Spinal cord injury (SCI) often results in permanent functional loss. This physical trauma leads to secondary events, such as the deposition of inhibitory chondroitin sulfate proteoglycan (CSPG) within astroglial scar tissue at the lesion. METHODOLOGY/PRINCIPAL FINDINGS: We examined whether local delivery of constitutively active (CA) Rho GTPases, Cdc42 and Rac1 to the lesion site alleviated CSPG-mediated inhibition of regenerating axons. A dorsal over-hemisection lesion was created in the rat spinal cord and the resulting cavity was conformally filled with an in situ gelling hydrogel combined with lipid microtubes that slowly released constitutively active (CA) Cdc42, Rac1, or Brain-derived neurotrophic factor (BDNF). Treatment with BDNF, CA-Cdc42, or CA-Rac1 reduced the number of GFAP-positive astrocytes, as well as CSPG deposition, at the interface of the implanted hydrogel and host tissue. Neurofilament 160kDa positively stained axons traversed the glial scar extensively, entering the hydrogel-filled cavity in the treatments with BDNF and CA-Rho GTPases. The treated animals had a higher percentage of axons from the corticospinal tract that traversed the CSPG-rich regions located proximal to the lesion site. CONCLUSION: Local delivery of CA-Cdc42, CA-Rac1, and BDNF may have a significant therapeutic role in overcoming CSPG-mediated regenerative failure after SCI.


Assuntos
Axônios/efeitos dos fármacos , Fator Neurotrófico Derivado do Encéfalo/administração & dosagem , Proteoglicanas de Sulfatos de Condroitina/fisiologia , Traumatismos da Medula Espinal/terapia , Regeneração da Medula Espinal/efeitos dos fármacos , Proteínas rho de Ligação ao GTP/administração & dosagem , Animais , Fator Neurotrófico Derivado do Encéfalo/uso terapêutico , Ratos , Proteína cdc42 de Ligação ao GTP/administração & dosagem , Proteínas rac1 de Ligação ao GTP/administração & dosagem , Proteínas rho de Ligação ao GTP/metabolismo , Proteínas rho de Ligação ao GTP/uso terapêutico
3.
Proc Natl Acad Sci U S A ; 107(8): 3340-5, 2010 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-19884507

RESUMO

Chondroitin sulfate proteoglycans (CSPGs) are a major class of axon growth inhibitors that are up-regulated after spinal cord injury (SCI) and contribute to regenerative failure. Chondroitinase ABC (chABC) digests glycosaminoglycan chains on CSPGs and can thereby overcome CSPG-mediated inhibition. But chABC loses its enzymatic activity rapidly at 37 degrees C, necessitating the use of repeated injections or local infusions for a period of days to weeks. These infusion systems are invasive, infection-prone, and clinically problematic. To overcome this limitation, we have thermostabilized chABC and developed a system for its sustained local delivery in vivo, obviating the need for chronically implanted catheters and pumps. Thermostabilized chABC remained active at 37 degrees C in vitro for up to 4 weeks. CSPG levels remained low in vivo up to 6 weeks post-SCI when thermostabilized chABC was delivered by a hydrogel-microtube scaffold system. Axonal growth and functional recovery following the sustained local release of thermostabilized chABC versus a single treatment of unstabilized chABC demonstrated significant differences in CSPG digestion. Animals treated with thermostabilized chABC in combination with sustained neurotrophin-3 delivery showed significant improvement in locomotor function and enhanced growth of cholera toxin B subunit-positive sensory axons and sprouting of serotonergic fibers. Therefore, improving chABC thermostability facilitates minimally invasive, sustained, local delivery of chABC that is potentially effective in overcoming CSPG-mediated regenerative failure. Combination therapy with thermostabilized chABC with neurotrophic factors enhances axonal regrowth, sprouting, and functional recovery after SCI.


Assuntos
Axônios/fisiologia , Condroitina ABC Liase/administração & dosagem , Condroitina ABC Liase/química , Sistemas de Liberação de Medicamentos , Regeneração , Traumatismos da Medula Espinal/tratamento farmacológico , Animais , Estabilidade Enzimática , Temperatura Alta , Masculino , Atividade Motora/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Traumatismos da Medula Espinal/fisiopatologia , Trealose/química
4.
Biomaterials ; 27(3): 497-504, 2006 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-16099038

RESUMO

Permanent functional loss usually occurs after injury to the spinal cord. Currently, a clinical strategy to promote regeneration in the injured spinal cord does not exist. It has become evident that in order to promote regeneration, a growth permissive substrate at the injury site is critical. In this study, we report the utilization of an agarose scaffold that gels in situ, conformally filling an irregular, dorsal over-hemisection spinal cord defect in adult rats. Besides being growth permissive, the scaffolds also serve as carriers of trophic factors when embedded with BDNF releasing microtubules. We report that our thermo-reversible scaffolds are capable of supporting 3D neurite extension in vivo and are effective carriers of drug delivery vehicles for sustained local delivery of trophic factors. We demonstrate that BDNF encourages neurite growth into the scaffolds, and reduces further the minimal inflammatory response agarose gels generate in vivo as evidenced by quantitative analysis of the extent of NF-160 kDA positive neurons and axons, GFAP positive reactive astrocytes, and CS-56 positive chondroitin sulfate proteoglycan at the interface of the scaffold and host spinal cord. We suggest that these thermo-reversible scaffolds have great potential to serve as growth permissive 3D scaffolds, and to present neurotrophic factors and potentially anti-scar agents to the injury site and enhance regeneration after spinal cord injury.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/uso terapêutico , Regeneração Tecidual Guiada/métodos , Hidrogéis/uso terapêutico , Traumatismos da Medula Espinal/terapia , Animais , Antígenos CD/análise , Antígenos de Diferenciação Mielomonocítica/análise , Astrócitos/química , Astrócitos/citologia , Axônios/química , Axônios/fisiologia , Fator Neurotrófico Derivado do Encéfalo/farmacologia , Proteoglicanas de Sulfatos de Condroitina/análise , Preparações de Ação Retardada , Portadores de Fármacos , Proteína Glial Fibrilar Ácida/análise , Hidrogéis/farmacologia , Implantes Experimentais , Macrófagos/química , Macrófagos/citologia , Masculino , Regeneração Nervosa/efeitos dos fármacos , Proteínas de Neurofilamentos/análise , Neurônios/química , Neurônios/citologia , Fosfatidilcolinas/química , Ratos , Ratos Sprague-Dawley , Sefarose/química , Sefarose/uso terapêutico , Medula Espinal/química , Medula Espinal/patologia , Traumatismos da Medula Espinal/fisiopatologia
5.
Mol Cell Neurosci ; 29(4): 545-58, 2005 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-15936953

RESUMO

The precise contribution of different CS-GAGs to CSPG-mediated inhibition of axonal growth after CNS injury is unknown. Quantification of the CS-GAGs in uninjured and injured brain (scar tissue) using fluorophore-assisted carbohydrate electrophoresis (FACE) demonstrated that the dominant CS-GAG in the uninjured brain is CS-4 whereas, in glial scar, CS-2, CS-6, and CS-4,6 were over-expressed. To determine if the pattern of sulfation influenced neurite extension, we compared the effects of CS-GAGs with dominant CS-4, CS-6, or CS-4,6 sulfation to intact CSPG (aggrecan), chondroitin (CS-0), and hyaluronan on chick DRG neurite outgrowth. We report that CS-4,6 GAG, one of the upregulated CS-GAGs in astroglial scar, is potently inhibitory and is comparable to intact aggrecan, a CSPG with known inhibitory properties. Thus, a specific CS-GAG that is differentially over-expressed in astroglial scar is a potent inhibitor of neurite extension. These results may influence the design of more specific strategies to enhance CNS regeneration after injury.


Assuntos
Sulfatos de Condroitina/metabolismo , Cicatriz/metabolismo , Gliose/metabolismo , Inibidores do Crescimento/metabolismo , Neuritos/metabolismo , Agrecanas , Animais , Lesões Encefálicas/metabolismo , Lesões Encefálicas/fisiopatologia , Embrião de Galinha , Condroitina/metabolismo , Cicatriz/fisiopatologia , Proteínas da Matriz Extracelular/metabolismo , Feminino , Gânglios Espinais/citologia , Gânglios Espinais/metabolismo , Gliose/fisiopatologia , Cones de Crescimento/metabolismo , Ácido Hialurônico/metabolismo , Lectinas Tipo C/metabolismo , Proteoglicanas/metabolismo , Ratos , Sulfatos/metabolismo , Regulação para Cima/fisiologia
6.
J Neurosci ; 25(17): 4319-29, 2005 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-15858058

RESUMO

We have studied the involvement of the thrombin receptor [protease-activated receptor-1 (PAR-1)] in astrogliosis, because extravasation of PAR-1 activators, such as thrombin, into brain parenchyma can occur after blood-brain barrier breakdown in a number of CNS disorders. PAR1-/- animals show a reduced astrocytic response to cortical stab wound, suggesting that PAR-1 activation plays a key role in astrogliosis associated with glial scar formation after brain injury. This interpretation is supported by the finding that the selective activation of PAR-1 in vivo induces astrogliosis. The mechanisms by which PAR-1 stimulates glial proliferation appear to be related to the ability of PAR-1 receptor signaling to induce sustained extracellular receptor kinase (ERK) activation. In contrast to the transient activation of ERK by cytokines and growth factors, PAR-1 stimulation induces a sustained ERK activation through its coupling to multiple G-protein-linked signaling pathways, including Rho kinase. This sustained ERK activation appears to regulate astrocytic cyclin D1 levels and astrocyte proliferation in vitro and in vivo. We propose that this PAR-1-mediated mechanism underlying astrocyte proliferation will operate whenever there is sufficient injury-induced blood-brain barrier breakdown to allow extravasation of PAR-1 activators.


Assuntos
Astrócitos/patologia , Lesões Encefálicas/patologia , Gliose/etiologia , Receptor PAR-1/metabolismo , Amidas/farmacologia , Análise de Variância , Animais , Animais Recém-Nascidos , Northern Blotting/métodos , Western Blotting/métodos , Lesões Encefálicas/fisiopatologia , Bromodesoxiuridina/metabolismo , Butadienos/farmacologia , Contagem de Células/métodos , Movimento Celular/fisiologia , Proliferação de Células , Células Cultivadas , Técnicas de Cocultura/métodos , Colforsina/farmacologia , Ciclina D1/metabolismo , Modelos Animais de Doenças , Interações Medicamentosas , Inibidores Enzimáticos/farmacologia , Lateralidade Funcional , Proteína Glial Fibrilar Ácida/metabolismo , Imuno-Histoquímica/métodos , MAP Quinase Quinase Quinases/metabolismo , Masculino , Camundongos , Camundongos Knockout , Microglia/patologia , Nitrilas/farmacologia , Oligopeptídeos/farmacologia , Piridinas/farmacologia , RNA Mensageiro/biossíntese , Receptor PAR-1/deficiência , Reação em Cadeia da Polimerase Via Transcriptase Reversa/métodos , Trombina/farmacologia , Fatores de Tempo
8.
J Cereb Blood Flow Metab ; 24(9): 964-71, 2004 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-15356417

RESUMO

Cardiovascular and neurologic surgeries often involve a temporary reduction in cerebral blood flow. In these conditions, as well as during cerebral ischemia and traumatic brain injury, the temporary loss of oxygen and glucose initiates a cascade of cellular events that culminate in neuronal death and damage. Understanding the mechanisms that contribute to neuronal death after hypoxia/ischemia is critically important for treatment of such brain injury. Here, we use a model of combined cerebral hypoxia/ischemia (H/I) to examine the role of protease-activated receptor-1 (PAR-1) in hypoxic/ischemic neuronal damage. Our data show that PAR-1-deficient mice have smaller lesion volumes than wild-type controls after 45 minutes of H/I. The results of the genetic block of PAR-1 were corroborated using a PAR-1 antagonist, which decreased infarct volume in wild-type C57Bl6 mice. Examination of cellular responses to H/I reveals that PAR-1 -/- animals have less cellular death and diminished glial fibrillary acidic protein expression. Additionally, PAR-1 -/- mice exhibit less motor behavior impairment in rotorod and inverted wire-hang tests. These data suggest that PAR-1 contributes to hypoxic/ischemic brain injury and are consistent with other studies that implicate serine proteases and their receptors in neuropathology after cerebral insults.


Assuntos
Encéfalo/patologia , Hipóxia-Isquemia Encefálica/fisiopatologia , Degeneração Neural/patologia , Neurônios/patologia , Receptor PAR-1/deficiência , Animais , Morte Celular/fisiologia , Lateralidade Funcional , Proteína Glial Fibrilar Ácida/metabolismo , Processamento de Imagem Assistida por Computador , Imuno-Histoquímica , Masculino , Camundongos
9.
BMC Neurosci ; 5: 1, 2004 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-14720305

RESUMO

BACKGROUND: The adenine nucleotide translocator 1 (Ant1) is an inner mitochondrial membrane protein involved with energy mobilization during oxidative phosphorylation. We recently showed that rodent Ant1 is upregulated by transforming growth factor-beta (TGF-beta) in reactive astrocytes following CNS injury. In the present study, we describe the molecular mechanisms by which TGF-beta1 regulates Ant1 gene expression in cultured primary rodent astrocytes. RESULTS: Transcription reporter analysis verified that TGF-beta1 regulates transcription of the mouse Ant1 gene, but not the gene encoding the closely related Ant2 isoform. A 69 basepair TGF-beta1 responsive element of the Ant1 promoter was also identified. Electrophoretic mobility shift assays demonstrated that astrocyte nuclear proteins bind to this response element and TGF-beta1 treatment recruits additional nuclear protein binding to this element. Antibody supershift and promoter deletion analyses demonstrated that Sp1 consensus binding sites in the RE are important for TGF-beta1 regulation of Ant1 in astrocytes. Additionally, we demonstrate that Smad 2, 3 and 4 transcription factors are expressed in injured cerebral cortex and in primary astrocyte cultures. TGF-beta1 activated Smad transcription factors also contribute to Ant1 regulation since transcription reporter assays in the presence of dominant negative (DN)-Smads 3 and 4 significantly reduced induction of Ant1 by TGF-beta1. CONCLUSION: The specific regulation of Ant1 by TGF-beta1 in astrocytes involves a cooperative interaction of both Smad and Sp1 binding elements located immediately upstream of the transcriptional start site. The first report of expression of Smads 2, 3 and 4 in astrocytes provided here is consistent with a regulation of Ant1 gene expression by these transcription factors in reactive astrocytes. Given the similarity in TGF-beta1 regulation of Ant1 with other genes that are thought to promote neuronal survival, this interaction may represent a general mechanism that underlies the neuroprotective effects of TGF-beta1.


Assuntos
Translocador 1 do Nucleotídeo Adenina/genética , Astrócitos/metabolismo , Proteínas de Ligação a DNA/metabolismo , Fator de Transcrição Sp1/metabolismo , Transativadores/metabolismo , Fator de Crescimento Transformador beta/farmacologia , Translocador 1 do Nucleotídeo Adenina/biossíntese , Animais , Astrócitos/citologia , Astrócitos/efeitos dos fármacos , Sítios de Ligação/genética , Células Cultivadas , Córtex Cerebral/efeitos dos fármacos , Córtex Cerebral/patologia , Colódio/farmacologia , Ensaio de Desvio de Mobilidade Eletroforética , Regulação da Expressão Gênica/efeitos dos fármacos , Implantes Experimentais , Camundongos , Mutagênese Sítio-Dirigida , Regiões Promotoras Genéticas , Elementos de Resposta/genética , Deleção de Sequência , Transdução de Sinais/fisiologia , Proteína Smad2 , Proteína Smad3 , Proteína Smad4 , Fator de Crescimento Transformador beta1
10.
Exp Neurol ; 181(2): 149-58, 2003 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-12781988

RESUMO

A hallmark of central nervous system (CNS) pathology is reactive astrocyte production of the chronic glial scar that is inhibitory to neuronal regeneration. The reactive astrocyte response is complex; these cells also produce neurotrophic factors and are responsible for removal of extracellular glutamate, the excitatory neurotransmitter that rises to neurotoxic levels in injury and disease. To identify genes expressed by reactive astrocytes, we employed an in vivo model of the glial scar and differential display PCR and found an increase in the level of Ant1, a mitochondrial ATP/ADP exchanger that facilitates the flux of ATP out of the mitochondria. Ant1 expression in reactive astrocytes is regulated by transforming growth factor-beta1, a pluripotent CNS injury-induced cytokine. The significance of increased Ant1 is evident from the observation that glutamate uptake is significantly decreased in astrocytes from Ant1 null mutant mice while a specific Ant inhibitor reduces glutamate uptake in wild-type astrocytes. Thus, the astrocytic response to CNS injury includes an apparent increase in energy mobilization capacity by Ant1 that contributes to neuroprotective, energy-dependent glutamate uptake.


Assuntos
Translocador 1 do Nucleotídeo Adenina/metabolismo , Astrócitos/metabolismo , Atractilosídeo/análogos & derivados , Lesões Encefálicas/metabolismo , Ácido Glutâmico/metabolismo , Translocador 1 do Nucleotídeo Adenina/antagonistas & inibidores , Translocador 1 do Nucleotídeo Adenina/genética , Animais , Astrócitos/efeitos dos fármacos , Astrócitos/patologia , Atractilosídeo/farmacologia , Transporte Biológico/fisiologia , Lesões Encefálicas/patologia , Células Cultivadas , Colódio , Modelos Animais de Doenças , Perfilação da Expressão Gênica , Regulação da Expressão Gênica/efeitos dos fármacos , Genes Reporter , Gliose/patologia , Ácido Glutâmico/farmacocinética , Implantes Experimentais , Masculino , Camundongos , Mitocôndrias/metabolismo , Reação em Cadeia da Polimerase/métodos , RNA Mensageiro/metabolismo , Ratos , Fator de Crescimento Transformador beta/farmacologia , Fator de Crescimento Transformador beta/fisiologia , Fator de Crescimento Transformador beta1
11.
Mol Cell Neurosci ; 23(1): 69-80, 2003 May.
Artigo em Inglês | MEDLINE | ID: mdl-12799138

RESUMO

Reactive astrocytes respond to central nervous system (CNS) injury and disease by elaborating a glial scar that is inhibitory to axonal regeneration. To identify genes that may be involved in the astrocytic response to injury, we used differential display polymerase chain reaction and an in vivo model of the CNS glial scar. Expression of the trabecular meshwork inducible glucocorticoid response (TIGR) gene was increased in gliotic tissue compared with the uninjured cerebral cortex. Increased TIGR expression by reactive astrocytes was confirmed by in situ hybridization, quantitative reverse transcriptase-polymerase chain reaction, immunoblot analysis, and immunohistochemistry. Although mutations of the TIGR gene have been implicated in glaucoma, a function for TIGR has not been reported. Since TIGR is secreted, we assessed a possible role in inhibition of neuronal regeneration with an in vitro bioassay and found that this protein is a potent inhibitor of neurite outgrowth. Thus, TIGR is a newly identified component of the CNS glial scar that is likely to contribute to neuronal regenerative failure characteristic of the mammalian CNS.


Assuntos
Lesões Encefálicas/fisiopatologia , Proteínas do Olho/genética , Glicoproteínas/genética , Regeneração Nervosa/fisiologia , Neuritos/fisiologia , Traumatismos da Medula Espinal/fisiopatologia , Animais , Astrócitos/fisiologia , Axotomia , Células Cultivadas , Córtex Cerebral/citologia , Córtex Cerebral/lesões , Córtex Cerebral/fisiologia , Doença Crônica , Cicatriz/fisiopatologia , Proteínas do Citoesqueleto , Expressão Gênica , Camundongos , Reação em Cadeia da Polimerase/métodos , Ratos , Nervo Isquiático/citologia , Nervo Isquiático/lesões , Nervo Isquiático/fisiologia , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...