Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Ecol ; 32(7): 1549-1566, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-34878685

RESUMO

Understanding how gene flow influences adaptive divergence is important for predicting adaptive responses. Theoretical studies suggest that when gene flow is high, clustering of adaptive genes in fewer genomic regions would protect adaptive alleles from recombination and thus be selected for, but few studies have tested it with empirical data. Here, we used restriction site-associated sequencing to generate genomic data for six fish species with contrasting life histories from six reaches of the Upper Mississippi River System, USA. We used four differentiation-based outlier tests and three genotype-environment association analyses to define neutral single nucleotide polymorphisms (SNPs) and outlier SNPs that were putatively under selection. We then examined the distribution of outlier SNPs along the genome and investigated whether these SNPs were found in genomic islands of differentiation and inversions. We found that gene flow varied among species, and outlier SNPs were clustered more tightly in species with higher gene flow. The two species with the highest overall FST (0.0303-0.0720) and therefore lowest gene flow showed little evidence of clusters of outlier SNPs, with outlier SNPs in these species spreading uniformly across the genome. In contrast, nearly all outlier SNPs in the species with the lowest FST (0.0003) were found in a single large putative inversion. Two other species with intermediate gene flow (FST  ~ 0.0025-0.0050) also showed clustered genomic architectures, with most islands of differentiation clustered on a few chromosomes. Our results provide important empirical evidence to support the hypothesis that increasingly clustered architecture of local adaptation is associated with high gene flow.


Assuntos
Fluxo Gênico , Genética Populacional , Animais , Genômica , Adaptação Fisiológica/genética , Genoma , Peixes/genética , Polimorfismo de Nucleotídeo Único/genética
2.
Ecol Evol ; 12(10): e9343, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36225825

RESUMO

Patagonia is an understudied area, especially when it comes to population genomic studies with relevance to fishery management. However, the dynamic and heterogeneous landscape in this area can harbor an important but cryptic genetic population structure. Once such information is revealed, it can be integrated into the management of infrequently investigated species. Eleginops maclovinus is a protandrous hermaphrodite species with economic importance for local communities that are currently managed as a single genetic unit. In this study, we sampled five locations distributed across a salinity cline from Northern Patagonia to investigate the genetic population structure of E. maclovinus. We used restriction site-associated DNA (RAD) sequencing and outlier tests to obtain neutral and adaptive loci, using FST and GEA approaches. We identified a spatial pattern of structuration with gene flow and spatial selection by environmental association. Neutral and adaptive loci showed two and three genetic groups, respectively. The effective population sizes estimated ranged from 572 (Chepu) to 14,454 (Chaitén) and were influenced more by locality than by salinity cline. We found loci putatively associated with salinity suggesting that salinity may act as a selective driver in E. maclovinus populations. These results suggest a complex interaction between genetic drift, gene flow, and natural selection in this area. Our findings also suggest several evolutionary significant units in this area, and the information should be integrated into the management of this species. We discussed the significance of these results for fishery management and suggest future directions to improve our understanding of how E. maclovinus has adapted to the dynamic waters of Northern Patagonia.

4.
J Hered ; 113(2): 121-144, 2022 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-35575083

RESUMO

The increasing feasibility of assembling large genomic datasets for non-model species presents both opportunities and challenges for applied conservation and management. A popular theme in recent studies is the search for large-effect loci that explain substantial portions of phenotypic variance for a key trait(s). If such loci can be linked to adaptations, 2 important questions arise: 1) Should information from these loci be used to reconfigure conservation units (CUs), even if this conflicts with overall patterns of genetic differentiation? 2) How should this information be used in viability assessments of populations and larger CUs? In this review, we address these questions in the context of recent studies of Chinook salmon and steelhead (anadromous form of rainbow trout) that show strong associations between adult migration timing and specific alleles in one small genomic region. Based on the polygenic paradigm (most traits are controlled by many genes of small effect) and genetic data available at the time showing that early-migrating populations are most closely related to nearby late-migrating populations, adult migration differences in Pacific salmon and steelhead were considered to reflect diversity within CUs rather than separate CUs. Recent data, however, suggest that specific alleles are required for early migration, and that these alleles are lost in populations where conditions do not support early-migrating phenotypes. Contrasting determinations under the US Endangered Species Act and the State of California's equivalent legislation illustrate the complexities of incorporating genomics data into CU configuration decisions. Regardless how CUs are defined, viability assessments should consider that 1) early-migrating phenotypes experience disproportionate risks across large geographic areas, so it becomes important to identify early-migrating populations that can serve as reliable sources for these valuable genetic resources; and 2) genetic architecture, especially the existence of large-effect loci, can affect evolutionary potential and adaptability.


Assuntos
Oncorhynchus mykiss , Salmão , Alelos , Animais , Evolução Biológica , Espécies em Perigo de Extinção , Oncorhynchus mykiss/genética , Salmão/genética
5.
G3 (Bethesda) ; 12(2)2022 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-35100376

RESUMO

Many salmonids have a male heterogametic (XX/XY) sex determination system, and they are supposed to have a conserved master sex-determining gene (sdY) that interacts at the protein level with Foxl2 leading to the blockage of the synergistic induction of Foxl2 and Nr5a1 of the cyp19a1a promoter. However, this hypothesis of a conserved master sex-determining role of sdY in salmonids is challenged by a few exceptions, one of them being the presence of naturally occurring "apparent" XY Chinook salmon, Oncorhynchus tshawytscha, females. Here, we show that some XY Chinook salmon females have a sdY gene (sdY-N183), with 1 missense mutation leading to a substitution of a conserved isoleucine to an asparagine (I183N). In contrast, Chinook salmon males have both a nonmutated sdY-I183 gene and the missense mutation sdY-N183 gene. The 3-dimensional model of SdY-I183N predicts that the I183N hydrophobic to hydrophilic amino acid change leads to a modification in the SdY ß-sandwich structure. Using in vitro cell transfection assays, we found that SdY-I183N, like the wild-type SdY, is preferentially localized in the cytoplasm. However, compared to wild-type SdY, SdY-I183N is more prone to degradation, its nuclear translocation by Foxl2 is reduced, and SdY-I183N is unable to significantly repress the synergistic Foxl2/Nr5a1 induction of the cyp19a1a promoter. Altogether, our results suggest that the sdY-N183 gene of XY Chinook females is nonfunctional and that SdY-I183N is no longer able to promote testicular differentiation by impairing the synthesis of estrogens in the early differentiating gonads of wild Chinook salmon XY females.


Assuntos
Salmão , Salmonidae , Animais , Feminino , Gônadas , Masculino , Salmão/genética , Processos de Determinação Sexual/genética , Testículo
6.
G3 (Bethesda) ; 11(10)2021 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-34568922

RESUMO

The "genomics era" has allowed questions to be asked about genome organization and genome architecture of non-model species at a rate not previously seen. Analyses of these genome-wide datasets have documented many examples of novel structural variants (SVs) such as chromosomal inversions, copy number variants, and chromosomal translocations, many of which have been linked to adaptation. The salmonids are a taxonomic group with abundant genome-wide datasets due to their importance in aquaculture and fisheries. However, the number of documented SVs in salmonids is surprisingly low and is most likely due to removing loci in high linkage disequilibrium when analyzing structure and gene flow. Here we re-analyze RAD-seq data from several populations of Arctic charr (Salvelinus alpinus) and document a novel ∼1.2 MB SV at the distal end of LG12. This variant contains 15 protein-coding genes connected to a wide-range of functions including cell adhesion and signal transduction. Interestingly, we studied the frequency of this polymorphism in four disjointed populations of charr-one each from Nunavut, Newfoundland, Eastern Russia, and Scotland-and found evidence of the variant only in Nunavut, Canada, suggesting the polymorphism is novel and recently evolved.


Assuntos
Inversão Cromossômica , Truta , Animais , Pesqueiros , Genética Populacional , Genoma , Truta/genética
7.
Genes (Basel) ; 12(1)2021 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-33450806

RESUMO

Dam construction and longitudinal river habitat fragmentation disrupt important life histories and movement of aquatic species. This is especially true for Oncorhynchus mykiss that exhibits both migratory (steelhead) and non-migratory (resident rainbow) forms. While the negative effects of dams on salmonids have been extensively documented, few studies have had the opportunity to compare population genetic diversity and structure prior to and following dam removal. Here we examine the impacts of the removal of two dams on the Elwha River on the population genetics of O. mykiss. Genetic data were produced from >1200 samples collected prior to dam removal from both life history forms, and post-dam removal from steelhead. We identified three genetic clusters prior to dam removal primarily explained by isolation due to dams and natural barriers. Following dam removal, genetic structure decreased and admixture increased. Despite large O. mykiss population declines after dam construction, we did not detect shifts in population genetic diversity or allele frequencies of loci putatively involved in migratory phenotypic variation. Steelhead descendants from formerly below and above dammed populations recolonized the river rapidly after dam removal, suggesting that dam construction did not significantly reduce genetic diversity underlying O. mykiss life history strategies. These results have significant evolutionary implications for the conservation of migratory adaptive potential in O. mykiss populations above current anthropogenic barriers.


Assuntos
Migração Animal/fisiologia , Frequência do Gene , Oncorhynchus mykiss/genética , Rios , Animais , Genética Populacional
8.
Mol Ecol ; 30(1): 131-147, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33111366

RESUMO

Variation in age at maturity is an important contributor to life history and demographic variation within and among species. The optimal age at maturity can vary by sex, and the ability of each sex to evolve towards its fitness optimum depends on the genetic architecture of maturation. Using GWAS of RAD sequencing data, we show that age at maturity in Chinook salmon exhibits sex-specific genetic architecture, with age at maturity in males influenced by large (up to 20 Mb) male-specific haplotypes. These regions showed no such effect in females. We also provide evidence for translocation of the sex-determining gene between two different chromosomes. This has important implications for sexually antagonistic selection, particularly that sex linkage of adaptive genes may differ within and among populations based on chromosomal location of the sex-determining gene. Our findings will facilitate research into the genetic causes of shifting demography in Chinook salmon as well as a better understanding of sex determination in this species and Pacific salmon in general.


Assuntos
Cromossomos , Salmão , Animais , Feminino , Ligação Genética , Haplótipos , Masculino , Salmão/genética
9.
Evol Appl ; 13(10): 2791-2806, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33294023

RESUMO

Variation in size and age at maturity is an important component of life history that is influenced by both environmental and genetic factors. In salmonids, large size confers a direct reproductive advantage through increased fecundity and egg quality in females, while larger males gain a reproductive advantage by monopolizing access to females. In addition, variation in size and age at maturity in males can be associated with different reproductive strategies; younger smaller males may gain reproductive success by sneaking among mating pairs. In both sexes, there is a trade-off between older age and increased reproductive success and increased risk of mortality by delaying reproduction. We identified four Y-chromosome haplogroups that showed regional- and population-specific variation in frequency using RADseq data for 21 populations of Alaska Chinook salmon. We then characterized the range-wide distribution of these haplogroups using GT-seq assays. These haplogroups exhibited associations with size at maturity in multiple populations, suggesting that lack of recombination between X and Y-chromosomes has allowed Y-chromosome haplogroups to capture different alleles that influence size at maturity. Ultimately, conservation of life history diversity in Chinook salmon may require conservation of Y-chromosome haplotype diversity.

10.
Science ; 370(6516): 526-527, 2020 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-33122371

Assuntos
Salmão , Animais , Fenótipo
11.
Ecol Evol ; 10(17): 9522-9531, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32953080

RESUMO

The use of high-throughput, low-density sequencing approaches has dramatically increased in recent years in studies of eco-evolutionary processes in wild populations and domestication in commercial aquaculture. Most of these studies focus on identifying panels of SNP loci for a single downstream application, whereas there have been few studies examining the trade-offs for selecting panels of markers for use in multiple applications. Here, we detail the use of a bioinformatic workflow for the development of a dual-purpose SNP panel for parentage and population assignment, which included identifying putative SNP loci, filtering for the most informative loci for the two tasks, designing effective multiplex PCR primers, optimizing the SNP panel for performance, and performing quality control steps for downstream applications. We applied this workflow to two adjacent Alaskan Sockeye Salmon populations and identified a GTseq panel of 142 SNP loci for parentage and 35 SNP loci for population assignment. Only 50-75 panel loci were necessary for >95% accurate parentage, whereas population assignment success, with all 172 panel loci, ranged from 93.9% to 96.2%. Finally, we discuss the trade-offs and complexities of the decision-making process that drives SNP panel development, optimization, and testing.

12.
Mol Ecol Resour ; 20(6): 1706-1722, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32668508

RESUMO

Targeted amplicon sequencing methods, such as genotyping-in-thousands by sequencing (GT-seq), facilitate rapid, accurate, and cost-effective analysis of hundreds of genetic loci in thousands of individuals. Development of GT-seq panels is nontrivial, but studies describing trade-offs associated with different steps of GT-seq panel development are rare. Here, we construct a dual-purpose GT-seq panel for walleye (Sander vitreus), discuss trade-offs associated with different development and genotyping approaches, and provide suggestions for researchers constructing their own GT-seq panels. Our GT-seq panel was developed using an ascertainment set consisting of restriction site-associated DNA data from 954 individuals sampled from 23 populations in Minnesota and Wisconsin, USA. We conducted simulations to test the utility of all loci for parentage analysis and genetic stock identification and designed 600 primer pairs to maximize joint accuracy for these analyses. We then performed three rounds of primer optimization to remove loci that overamplified and our final panel consisted of 436 loci. We also explored different approaches for DNA extraction, multiplexed polymerase chain reaction (PCR) amplification, and cleanup steps during the GT-seq process and discovered the following: (i) inexpensive Chelex extractions performed well for genotyping; (ii) the exonuclease I and shrimp alkaline phosphatase (ExoSAP) procedure included in some current protocols did not improve results substantially and was probably unnecessary; and (iii) it was possible to PCR amplify panels separately and combine them prior to adapter ligation. Well-optimized GT-seq panels are valuable resources for conservation genetics and our findings and suggestions should aid in their construction in myriad taxa.


Assuntos
Técnicas de Genotipagem/veterinária , Percas , Análise de Sequência de DNA/veterinária , Animais , DNA , Técnicas de Genotipagem/métodos , Percas/genética , Análise de Sequência de DNA/métodos
13.
G3 (Bethesda) ; 10(8): 2863-2878, 2020 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-32611547

RESUMO

Whole-genome duplication (WGD) is hypothesized to be an important evolutionary mechanism that can facilitate adaptation and speciation. Genomes that exist in states of both diploidy and residual tetraploidy are of particular interest, as mechanisms that maintain the ploidy mosaic after WGD may provide important insights into evolutionary processes. The Salmonidae family exhibits residual tetraploidy, and this, combined with the evolutionary diversity formed after an ancestral autotetraploidization event, makes this group a useful study system. In this study, we generate a novel linkage map for cisco (Coregonus artedi), an economically and culturally important fish in North America and a member of the subfamily Coregoninae, which previously lacked a high-density haploid linkage map. We also conduct comparative genomic analyses to refine our understanding of chromosomal fusion/fission history across salmonids. To facilitate this comparative approach, we use the naming strategy of protokaryotype identifiers (PKs) to associate duplicated chromosomes to their putative ancestral state. The female linkage map for cisco contains 20,292 loci, 3,225 of which are likely within residually tetraploid regions. Comparative genomic analyses revealed that patterns of residual tetrasomy are generally conserved across species, although interspecific variation persists. To determine the broad-scale retention of residual tetrasomy across the salmonids, we analyze sequence similarity of currently available genomes and find evidence of residual tetrasomy in seven of the eight chromosomes that have been previously hypothesized to show this pattern. This interspecific variation in extent of rediploidization may have important implications for understanding salmonid evolutionary histories and informing future conservation efforts.


Assuntos
Salmonidae , Animais , Mapeamento Cromossômico , Cromossomos , Feminino , Ligação Genética , Genômica , América do Norte , Salmonidae/genética
14.
G3 (Bethesda) ; 10(5): 1553-1561, 2020 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-32165371

RESUMO

Many studies exclude loci that exhibit linkage disequilibrium (LD); however, high LD can signal reduced recombination around genomic features such as chromosome inversions or sex-determining regions. Chromosome inversions and sex-determining regions are often involved in adaptation, allowing for the inheritance of co-adapted gene complexes and for the resolution of sexually antagonistic selection through sex-specific partitioning of genetic variants. Genomic features such as these can escape detection when loci with LD are removed; in addition, failing to account for these features can introduce bias to analyses. We examined patterns of LD using network analysis to identify an overlapping chromosome inversion and sex-determining region in chum salmon. The signal of the inversion was strong enough to show up as false population substructure when the entire dataset was analyzed, while the effect of the sex-determining region on population structure was only obvious after restricting analysis to the sex chromosome. Understanding the extent and geographic distribution of inversions is now a critically important part of genetic analyses of natural populations. Our results highlight the importance of analyzing and understanding patterns of LD in genomic dataset and the perils of excluding or ignoring loci exhibiting LD. Blindly excluding loci in LD would have prevented detection of the sex-determining region and chromosome inversion while failing to understand the genomic features leading to high-LD could have resulted in false interpretations of population structure.


Assuntos
Oncorhynchus keta , Animais , Inversão Cromossômica , Feminino , Genômica , Desequilíbrio de Ligação , Masculino , Polimorfismo de Nucleotídeo Único , Cromossomos Sexuais
15.
Mol Ecol Resour ; 20(1): 66-78, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31479570

RESUMO

Interpretation of high-throughput sequence data requires an understanding of how decisions made during bioinformatic data processing can influence results. One source of bias that is often cited is PCR clones (or PCR duplicates). PCR clones are common in restriction site-associated sequencing (RAD-seq) data sets, which are increasingly being used for molecular ecology. To determine the influence PCR clones and the bioinformatic handling of clones have on genotyping, we evaluate four RAD-seq data sets. Data sets were compared before and after clones were removed to estimate the number of clones present in RAD-seq data, quantify how often the presence of clones in a data set causes genotype calls to change compared to when clones were removed, investigate the mechanisms that lead to genotype call changes and test whether clones bias heterozygosity estimates. Our RAD-seq data sets contained 30%-60% PCR clones, but 95% of RAD-tags had five or fewer clones. Relatively few genotypes changed once clones were removed (5%-10%), and the vast majority of these changes (98%) were associated with genotypes switching from a called to no-call state or vice versa. PCR clones had a larger influence on genotype calls in individuals with low read depth but appeared to influence genotype calls at all loci similarly. Removal of PCR clones reduced the number of called genotypes by 2% but had almost no influence on estimates of heterozygosity. As such, while steps should be taken to limit PCR clones during library preparation, PCR clones are likely not a substantial source of bias for most RAD-seq studies.


Assuntos
Sequenciamento de Nucleotídeos em Larga Escala/normas , Reação em Cadeia da Polimerase/normas , Biologia Computacional , Genótipo , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Reação em Cadeia da Polimerase/métodos
16.
G3 (Bethesda) ; 9(6): 2017-2028, 2019 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-31010824

RESUMO

Whole-genome duplications (WGDs) have occurred repeatedly and broadly throughout the evolutionary history of eukaryotes. However, the effects of WGD on genome function and evolution remain unclear. The salmonid WGD that occurred approximately 88 million years ago presents an excellent opportunity for studying the effects of WGD as ∼10-15% of each salmonid genome still exhibits tetrasomic inheritance. Herein, we utilized the rainbow trout (Oncorhynchus mykiss) genome assembly and brain transcriptome data to examine the fate of gene pairs (ohnologs) following the salmonid whole-genome duplication. We find higher sequence identity between ohnologs located within known tetrasomic regions than between ohnologs found in disomic regions, and that tetrasomically inherited ohnologs showed greater similarity in patterns of gene expression and per ohnolog were lower expressed, than disomically inherited ohnologs. Enrichment testing for Gene Ontology terms identified 49 over-represented terms in tetrasomically inherited ohnologs compared to disomic ohnologs. However, why these ohnologs are retained as tetrasomic is difficult to answer. It could be that we have identified salmonid specific "dangerous duplicates", that is, genes that cannot take on new roles following WGD. Alternatively, there may be adaptive advantages for retaining genes as functional duplicates in tetrasomic regions, as presumably, movement of these genes into disomic regions would affect both their sequence identity and their gene expression patterns.


Assuntos
Evolução Molecular , Duplicação Gênica , Genoma , Genômica , Salmonidae/genética , Tetrassomia , Animais , Biologia Computacional/métodos , Feminino , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Ontologia Genética , Genômica/métodos , Padrões de Herança , Masculino
17.
Mol Ecol ; 28(9): 2254-2271, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30913324

RESUMO

Understanding the genetic mechanisms that facilitate adaptive radiation is an important component of evolutionary biology. Here, we genotyped 82 neutral SNPs, seven SNPs in islands of divergence identified in a previous study (island SNPs), and a region of the major histocompatibility complex (MHC) in 32 populations of sockeye salmon to investigate whether conserved genes and genomic regions are involved in adaptive radiation. Populations representing three ecotypes were sampled from seven drainages with differing habitats and colonization histories spanning a range of 2,000 km. We found strong signatures of parallel selection across drainages at the island SNPs and MHC, suggesting that the same loci undergo divergent selection during adaptive radiation. However, patterns of differentiation at most island SNPs and the MHC were not associated with ecotypes, suggesting that these loci are responding differently to a mosaic of selective pressures. Our study provides some of the first evidence that conserved genomic islands may be involved in adaptive divergence of salmon populations. Additionally, our data provide further support for the hypothesis that sockeye salmon inhabiting rivers unconnected to lakes harbour similar genetic diversity across large distances, are likely the ancestral form of the species, and have repeatedly recolonized lake systems as they have become available after glacial recession. Finally, our results highlight the value and importance of validating outlier loci by screening additional populations and regions, a practice that will hopefully become more common in the future.


Assuntos
Complexo Principal de Histocompatibilidade/genética , Polimorfismo de Nucleotídeo Único , Salmão/genética , Alaska , Animais , Evolução Biológica , Ecótipo , Genética Populacional , Lagos , Rios , Seleção Genética
18.
Mol Ecol ; 28(6): 1412-1427, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30714254

RESUMO

Migratory behaviour patterns in animals are controlled by a complex genetic architecture. Rainbow trout (Oncorhynchus mykiss) is a salmonid fish that spawns in streams but exhibits three primary life history pathways: stream-resident (fluvial), lake-migrant (adfluvial) and ocean-migrant (anadromous). Previous studies examining fluvial and anadromous O. mykiss have identified several genes associated with life history divergence including the presence of an inversion complex within chromosome 5 (Omy05) that appears to maintain a suite of linked genes controlling migratory behaviour. However, adfluvial trout are migratory without being anadromous, and the genetic basis for this life history has not been investigated from evolutionary perspectives. We sampled wild, native nonanadromous rainbow trout occupying connected stream and lake habitats in a southwest Alaskan watershed to determine whether these fish exhibit genetic divergence between fluvial and adfluvial ecotypes, and whether that divergence parallels that documented in fluvial and anadromous O. mykiss. Data from restriction site-associated DNA (RAD) sequencing revealed an association between frequencies of both the Omy05 inversion complex and other single nucleotide polymorphisms (SNPs) with habitat type (stream or lake), supporting the genetic divergence of fluvial and adfluvial individuals in sympatry. The presence of a genetic basis for migration into lakes, analogous to that documented for anadromy, indicates that the adfluvial ecotype must be recognized separately from the fluvial form of O. mykiss even though neither is anadromous. These results highlight the genetic architecture underlying migration and the importance of chromosomal inversions in promoting and sustaining intraspecific diversity.


Assuntos
Evolução Biológica , Inversão Cromossômica/genética , Ecótipo , Oncorhynchus mykiss/genética , Migração Animal , Animais , Ecossistema , Água Doce , Especiação Genética , Lagos , Polimorfismo de Nucleotídeo Único/genética , Recombinação Genética , Análise de Sequência de DNA
19.
Mol Ecol ; 27(20): 3965-3967, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30353598

RESUMO

Humans by their very nature alter the distribution of species. Be it introduction of exotic species, habitat alterations or construction of barriers, anthropogenic changes provide novel experimental systems for the molecular ecologist to study evolutionary change. These events often provide a contradiction. Effective population sizes are generally low, and introduced populations are typically characterized by reduced diversity consistent with theoretical predictions of population bottlenecks and founder effects. However, despite reduced diversity, rapid change sometimes occurs. Identification of genomic regions associated with these rapid adaptive responses to novel selection pressures provides a window into genomic regions important in adaptive diversity, both in the novel and native ranges. These studies also provide an important means to estimate the pace of evolutionary change. In this issue, Willoughby et al. () compared the heterozygosity of steelhead (the anadromous form of rainbow trout Oncorhynchus mykiss) introduced into Lake Michigan in the late 1880s to the putative source population from the ancestral California range. After 25 generations of isolation in Lake Michigan, Willoughby et al. () found consistent genomewide reductions in genetic diversity as estimated by a measure of pooled heterozygosity. Despite this overall reduction in heterozygosity, three chromosomal regions showed signals of rapid adaptation and contained genes associated with osmoregulatory and wound-healing functions.


Assuntos
Genoma , Oncorhynchus mykiss/genética , Animais , California , Cromossomos , Variação Genética , Humanos , Michigan
20.
Mol Ecol Resour ; 18(3): 570-579, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29394521

RESUMO

Whole-genome duplications have occurred in the recent ancestors of many plants, fish and amphibians. Signals of these whole-genome duplications still exist in the form of paralogous loci. Recent advances have allowed reliable identification of paralogs in genotyping-by-sequencing (GBS) data such as that generated from restriction-site-associated DNA sequencing (RADSeq); however, excluding paralogs from analyses is still routine due to difficulties in genotyping. This exclusion of paralogs may filter a large fraction of loci, including loci that may be adaptively important or informative for population genetic analyses. We present a maximum-likelihood method for inferring allele dosage in paralogs and assess its accuracy using simulated GBS, empirical RADSeq and amplicon sequencing data from Chinook salmon. We accurately infer allele dosage for some paralogs from a RADSeq data set and show how accuracy is dependent upon both read depth and allele frequency. The amplicon sequencing data set, using RADSeq-derived markers, achieved sufficient depth to infer allele dosage for all paralogs. This study demonstrates that RADSeq locus discovery combined with amplicon sequencing of targeted loci is an effective method for incorporating paralogs into population genetic analyses.


Assuntos
Dosagem de Genes , Variação Genética , Técnicas de Genotipagem , Salmão/genética , Animais , Conjuntos de Dados como Assunto , Frequência do Gene , Genética Populacional/métodos , Genoma , Funções Verossimilhança , Análise de Sequência de DNA/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...