Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 11(1): 378, 2021 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-33432089

RESUMO

Quantitative assessment of soft tissue elasticity is crucial to a broad range of applications, such as biomechanical modeling, physiological monitoring, and tissue diseases diagnosing. However, the modulus measurement of soft tissues, particularly in vivo, has proved challenging since the instrument has to reach the site of soft tissue and be able to measure in a very short time. Here, we present a simple method to measure the elastic modulus of soft tissues on site by exploiting buckling of a long slender bar to quantify the applied force and a spherical indentation to extract the elastic modulus. The method is realized by developing a portable pen-sized instrument (EPen: Elastic modulus pen). The measurement accuracies are verified by independent modulus measures using commercial nanoindenter. Quantitative measurements of the elastic modulus of mouse pancreas, healthy and cancerous, surgically exposed but attached to the body further confirm the potential clinical utility of the EPen.


Assuntos
Estruturas Animais/fisiologia , Fenômenos Biomecânicos/fisiologia , Elasticidade/fisiologia , Tecnologia de Fibra Óptica/instrumentação , Animais , Biofísica/instrumentação , Módulo de Elasticidade , Feminino , Tecnologia de Fibra Óptica/métodos , Teste de Materiais , Camundongos , Camundongos Transgênicos , Microtecnologia/instrumentação , Aplicativos Móveis , Tono Muscular/fisiologia , Fenômenos Fisiológicos Musculoesqueléticos , Agulhas , Estresse Mecânico
2.
J Immunol ; 201(8): 2414-2426, 2018 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-30201810

RESUMO

Ischemic tissue damage activates hematopoietic stem and progenitor cells (HSPCs) in the bone marrow (BM)-generating myeloid cells, and persistent HSPC activity may drive chronic inflammation and impair tissue recovery. Although increased reactive oxygen species in the BM regulate HSPC functions, their roles in myelopoiesis of activated HSPCs and subsequent tissue recovery during ischemic damage are not well understood. In this paper, we report that deletion of Nox2 NADPH oxidase in mice results in persistent elevations in BM HSPC activity and levels of inflammatory monocytes/macrophages in BM and ischemic tissue in a model of hindlimb ischemia. Ischemic tissue damage induces oxidants in BM such as elevations of hydrogen peroxide and oxidized phospholipids, which activate redox-sensitive Lyn kinase in a Nox2-dependent manner. Moreover, during tissue recovery after ischemic injury, this Nox2-ROS-Lyn kinase axis is induced by Nox2 in neutrophils that home to the BM, which inhibits HSPC activity and inflammatory monocyte generation and promotes tissue regeneration after ischemic damage. Thus, oxidant signaling in the BM mediated by Nox2 in neutrophils regulates myelopoiesis of HSPCs to promote regeneration of damaged tissue.


Assuntos
Células-Tronco Hematopoéticas/fisiologia , Membro Posterior/patologia , Isquemia/imunologia , NADPH Oxidase 2/metabolismo , Neutrófilos/fisiologia , Animais , Células Cultivadas , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mielopoese , NADPH Oxidase 2/genética , Oxirredução , Espécies Reativas de Oxigênio/metabolismo , Regeneração , Transdução de Sinais , Quinases da Família src/metabolismo
3.
Oncotarget ; 8(3): 3826-3839, 2017 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-27270652

RESUMO

TGFß has both tumor suppressive and tumor promoting effects in colon cancer. Also, TGFß can affect the extent and composition of inflammatory cells present in tumors, contextually promoting and inhibiting inflammation. While colon tumors display intratumoral inflammation, the contributions of TGFß to this process are poorly understood. In human patients, we found that epithelial loss of TGFß signaling was associated with increased inflammatory burden; yet overexpression of TGFß was also associated with increased inflammation. These findings were recapitulated in mutant APC models of murine tumorigenesis, where epithelial truncation of TGFBR2 led to lethal inflammatory disease and invasive colon cancer, mediated by IL8 and TGFß1. Interestingly, mutant APC mice with global suppression of TGFß signals displayed an intermediate phenotype, presenting with an overall increase in IL8-mediated inflammation and accelerated tumor formation, yet with a longer latency to the onset of disease observed in mice with epithelial TGFBR-deficiency. These results suggest that the loss of TGFß signaling, particularly in colon epithelial cells, elicits a strong inflammatory response and promotes tumor progression. This implies that treating colon cancer patients with TGFß inhibitors may result in a worse outcome by enhancing inflammatory responses.


Assuntos
Proteína da Polipose Adenomatosa do Colo/genética , Neoplasias do Colo/patologia , Citocinas/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Animais , Neoplasias do Colo/genética , Neoplasias do Colo/imunologia , Progressão da Doença , Regulação Neoplásica da Expressão Gênica , Humanos , Camundongos , Neoplasias Experimentais , Receptores de Fatores de Crescimento Transformadores beta/metabolismo , Transdução de Sinais , Proteína Smad4/metabolismo
4.
Sci Rep ; 5: 14780, 2015 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-26437801

RESUMO

Copper (Cu), an essential micronutrient, plays a fundamental role in inflammation and angiogenesis; however, its precise mechanism remains undefined. Here we uncover a novel role of Cu transport protein Antioxidant-1 (Atox1), which is originally appreciated as a Cu chaperone and recently discovered as a Cu-dependent transcription factor, in inflammatory neovascularization. Atox1 expression is upregulated in patients and mice with critical limb ischemia. Atox1-deficient mice show impaired limb perfusion recovery with reduced arteriogenesis, angiogenesis, and recruitment of inflammatory cells. In vivo intravital microscopy, bone marrow reconstitution, and Atox1 gene transfer in Atox1(-/-) mice show that Atox1 in endothelial cells (ECs) is essential for neovascularization and recruitment of inflammatory cells which release VEGF and TNFα. Mechanistically, Atox1-depleted ECs demonstrate that Cu chaperone function of Atox1 mediated through Cu transporter ATP7A is required for VEGF-induced angiogenesis via activation of Cu enzyme lysyl oxidase. Moreover, Atox1 functions as a Cu-dependent transcription factor for NADPH oxidase organizer p47phox, thereby increasing ROS-NFκB-VCAM-1/ICAM-1 expression and monocyte adhesion in ECs inflamed with TNFα in an ATP7A-independent manner. These findings demonstrate a novel linkage between Atox1 and NADPH oxidase involved in inflammatory neovascularization and suggest Atox1 as a potential therapeutic target for treatment of ischemic disease.


Assuntos
Adenosina Trifosfatases/genética , Proteínas de Transporte de Cátions/genética , Células Endoteliais da Veia Umbilical Humana/metabolismo , Isquemia/genética , Metalochaperonas/genética , NADPH Oxidases/genética , Neovascularização Patológica/genética , Proteína-Lisina 6-Oxidase/genética , Adenosina Trifosfatases/metabolismo , Animais , Proteínas de Transporte de Cátions/metabolismo , Moléculas de Adesão Celular/genética , Moléculas de Adesão Celular/metabolismo , Linhagem Celular , Proteínas de Transporte de Cobre , ATPases Transportadoras de Cobre , Regulação da Expressão Gênica , Membro Posterior , Células Endoteliais da Veia Umbilical Humana/citologia , Humanos , Isquemia/metabolismo , Isquemia/patologia , Perna (Membro)/irrigação sanguínea , Perna (Membro)/patologia , Metalochaperonas/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Chaperonas Moleculares , Monócitos/metabolismo , Monócitos/patologia , NADPH Oxidases/metabolismo , Neovascularização Patológica/metabolismo , Neovascularização Patológica/patologia , Proteína-Lisina 6-Oxidase/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo
5.
Diabetes ; 62(11): 3839-50, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23884884

RESUMO

Oxidative stress and endothelial dysfunction contribute to vascular complication in diabetes. Extracellular superoxide dismutase (SOD3) is one of the key antioxidant enzymes that obtains copper via copper transporter ATP7A. SOD3 is secreted from vascular smooth muscles cells (VSMCs) and anchors at the endothelial surface. The role of SOD3 and ATP7A in endothelial dysfunction in type 1 diabetes mellitus (T1DM) is entirely unknown. Here we show that the specific activity of SOD3, but not SOD1, is decreased, which is associated with increased O2(•-) production in aortas of streptozotocin-induced and genetically induced Ins2(Akita) T1DM mice. Exogenous copper partially rescued SOD3 activity in isolated T1DM vessels. Functionally, acetylcholine-induced, endothelium-dependent relaxation is impaired in T1DM mesenteric arteries, which is rescued by SOD mimetic tempol or gene transfer of SOD3. Mechanistically, ATP7A expression in T1DM vessels is dramatically decreased whereas other copper transport proteins are not altered. T1DM-induced endothelial dysfunction and decrease of SOD3 activity are rescued in transgenic mice overexpressing ATP7A. Furthermore, SOD3-deficient T1DM mice or ATP7A mutant T1DM mice augment endothelial dysfunction and vascular O2(•-) production versus T1DM mice. These effects are in part due to hypoinsulinemia in T1DM mice, since insulin treatment, but not high glucose, increases ATP7A expression in VSMCs and restores SOD3 activity in the organoid culture of T1DM vessels. In summary, a decrease in ATP7A protein expression contributes to impaired SOD3 activity, resulting in O2(•-) overproduction and endothelial dysfunction in blood vessels of T1DM. Thus, restoring copper transporter function is an essential therapeutic approach for oxidant stress-dependent vascular and metabolic diseases.


Assuntos
Adenosina Trifosfatases/fisiologia , Proteínas de Transporte de Cátions/fisiologia , Cobre/metabolismo , Superóxido Dismutase/metabolismo , Adenosina Trifosfatases/genética , Animais , Aorta/metabolismo , Proteínas de Transporte de Cátions/genética , Células Cultivadas , Cobre/farmacologia , ATPases Transportadoras de Cobre , Óxidos N-Cíclicos/farmacologia , Diabetes Mellitus Experimental/fisiopatologia , Insulina/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Músculo Liso Vascular/citologia , Músculo Liso Vascular/metabolismo , Ratos , Marcadores de Spin , Superóxido Dismutase/genética , Superóxidos/metabolismo , Transfecção
6.
Am J Physiol Cell Physiol ; 305(6): C591-600, 2013 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-23657573

RESUMO

Platelet-derived growth factor (PDGF) stimulates vascular smooth muscle cell (VSMC) migration and neointimal formation in response to injury. We previously identified IQ-domain GTPase-activating protein 1 (IQGAP1) as a novel VEGF receptor 2 binding scaffold protein involved in endothelial migration. However, its role in VSMC migration and neointimal formation in vivo is unknown. Here we show that PDGF stimulation rapidly promotes IQGAP1 association with PDGF receptor-ß (PDGFR) as well as IQGAP1 tyrosine phosphorylation in cultured VSMC. Overexpression or knockdown of IQGAP1 enhances or inhibits PDGFR autophosphorylation (p-PDGFR), respectively. Immunofluorescence and cell fractionation analysis reveals that PDGF-induced p-PDGFR localized in focal adhesions (FAs), but not caveolae/lipid rafts, is inhibited by IQGAP1 knockdown with siRNA. PDGF stimulation promotes IQGAP1 association with PDGFR/FA signaling protein complex. Functionally, IQGAP1 siRNA inhibits PDGF-induced FA formation as well as VSMC migration induced by PDGF. In vivo, IQGAP1 expression is markedly increased at neointimal VSMC in wire-injured femoral arteries. Mice lacking IQGAP1 exhibit impaired neointimal formation in response to vascular injury. In summary, IQGAP1, through interaction with PDGFR and FA signaling proteins, promotes activation of PDGFR in FAs as well as FA formation, which may contribute to VSMC migration and neointimal formation after injury. Our findings provide insight into IQGAP1 as a potential therapeutic target for vascular migration-related diseases.


Assuntos
Movimento Celular/fisiologia , Adesões Focais/fisiologia , Músculo Liso Vascular/fisiologia , Miócitos de Músculo Liso/fisiologia , Neointima/patologia , Receptor beta de Fator de Crescimento Derivado de Plaquetas/metabolismo , Proteínas Ativadoras de ras GTPase/metabolismo , Animais , Células Cultivadas , Artéria Femoral/metabolismo , Artéria Femoral/fisiologia , Adesões Focais/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Músculo Liso Vascular/citologia , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/citologia , Miócitos de Músculo Liso/metabolismo , Neointima/metabolismo , Fosforilação/fisiologia , Fator de Crescimento Derivado de Plaquetas/metabolismo , Ratos , Ratos Sprague-Dawley , Tirosina/metabolismo , Lesões do Sistema Vascular/metabolismo , Lesões do Sistema Vascular/patologia
7.
PLoS One ; 8(3): e57618, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23472092

RESUMO

BACKGROUND: Reactive oxygen species (ROS) play an important role in angiogenesis in endothelial cells (ECs) in vitro and neovascularization in vivo. However, little is known about the role of endogenous vascular hydrogen peroxide (H2O2) in postnatal neovascularization. METHODOLOGY/PRINCIPAL FINDINGS: We used Tie2-driven endothelial specific catalase transgenic mice (Cat-Tg mice) and hindlimb ischemia model to address the role of endogenous H2O2 in ECs in post-ischemic neovascularization in vivo. Here we show that Cat-Tg mice exhibit significant reduction in intracellular H2O2 in ECs, blood flow recovery, capillary formation, collateral remodeling with larger extent of tissue damage after hindlimb ischemia, as compared to wild-type (WT) littermates. In the early stage of ischemia-induced angiogenesis, Cat-Tg mice show a morphologically disorganized microvasculature. Vascular sprouting and tube elongation are significantly impaired in isolated aorta from Cat-Tg mice. Furthermore, Cat-Tg mice show a decrease in myeloid cell recruitment after hindlimb ischemia. Mechanistically, Cat-Tg mice show significant decrease in eNOS phosphorylation at Ser1177 as well as expression of redox-sensitive vascular cell adhesion molecule-1 (VCAM-1) and monocyte chemotactic protein-1 (MCP-1) in ischemic muscles, which is required for inflammatory cell recruitment to the ischemic tissues. We also observed impaired endothelium-dependent relaxation in resistant vessels from Cat-Tg mice. CONCLUSIONS/SIGNIFICANCE: Endogenous ECs-derived H2O2 plays a critical role in reparative neovascularization in response to ischemia by upregulating adhesion molecules and activating eNOS in ECs. Redox-regulation in ECs is a potential therapeutic strategy for angiogenesis-dependent cardiovascular diseases.


Assuntos
Células Endoteliais/metabolismo , Peróxido de Hidrogênio/metabolismo , Isquemia/patologia , Neovascularização Fisiológica , Animais , Catalase/metabolismo , Quimiocina CCL2/metabolismo , Camundongos , Camundongos Transgênicos , Microcirculação , NF-kappa B/metabolismo , Óxido Nítrico Sintase Tipo III/metabolismo , Oxirredução , Fosforilação , Espécies Reativas de Oxigênio , Receptor TIE-2/genética , Molécula 1 de Adesão de Célula Vascular/metabolismo
8.
Arterioscler Thromb Vasc Biol ; 33(4): 805-13, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23349186

RESUMO

OBJECTIVE: Vascular smooth muscle cell (VSMC) migration is critically important for neointimal formation after vascular injury and atherosclerosis lesion formation. Copper (Cu) chelator inhibits neointimal formation, and we previously demonstrated that Cu transport protein antioxidant-1 (Atox1) is involved in Cu-induced cell growth. However, role of Atox1 in VSMC migration and neointimal formation after vascular injury is unknown. APPROACH AND RESULTS: Here, we show that Atox1 expression is upregulated in injured vessel, and it is colocalized with the Cu transporter ATP7A, one of the downstream targets of Atox1, mainly in neointimal VSMCs at day 14 after wire injury. Atox1(-/-) mice show inhibition of neointimal formation and extracellular matrix expansion, which is associated with a decreased VSMCs accumulation within neointima and lysyl oxidase activity. Mechanistically, in cultured VSMC, Atox1 depletion with siRNA inhibits platelet-derived growth factor-induced Cu-dependent VSMC migration by preventing translocation of ATP7A and small G protein Rac1 to the leading edge, as well as Cu- and Rac1-dependent lamellipodia formation. Furthermore, Atox1(-/-) mice show decreased perivascular macrophage infiltration in wire-injured vessels, as well as thioglycollate-induced peritoneal macrophage recruitment. CONCLUSIONS: Atox1 is involved in neointimal formation after vascular injury through promoting VSMC migration and inflammatory cell recruitment in injured vessels. Thus, Atox1 is a potential therapeutic target for VSMC migration and inflammation-related vascular diseases.


Assuntos
Proteínas de Transporte de Cátions/metabolismo , Cobre/metabolismo , Chaperonas Moleculares/metabolismo , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , Neointima , Lesões do Sistema Vascular/metabolismo , Adenosina Trifosfatases/metabolismo , Animais , Proteínas de Transporte de Cátions/deficiência , Proteínas de Transporte de Cátions/genética , Movimento Celular , Células Cultivadas , Proteínas de Transporte de Cobre , ATPases Transportadoras de Cobre , Modelos Animais de Doenças , Matriz Extracelular/metabolismo , Artéria Femoral/lesões , Artéria Femoral/metabolismo , Artéria Femoral/patologia , Humanos , Macrófagos Peritoneais/imunologia , Macrófagos Peritoneais/metabolismo , Camundongos , Camundongos Knockout , Chaperonas Moleculares/genética , Músculo Liso Vascular/imunologia , Músculo Liso Vascular/lesões , Músculo Liso Vascular/patologia , Miócitos de Músculo Liso/imunologia , Miócitos de Músculo Liso/patologia , Neuropeptídeos/metabolismo , Peritonite/induzido quimicamente , Peritonite/imunologia , Peritonite/metabolismo , Fator de Crescimento Derivado de Plaquetas/metabolismo , Transporte Proteico , Proteína-Lisina 6-Oxidase/metabolismo , Pseudópodes/metabolismo , Interferência de RNA , Ratos , Ratos Sprague-Dawley , Tioglicolatos , Fatores de Tempo , Transfecção , Regulação para Cima , Lesões do Sistema Vascular/genética , Lesões do Sistema Vascular/imunologia , Lesões do Sistema Vascular/patologia , Proteínas rac de Ligação ao GTP/metabolismo , Proteínas rac1 de Ligação ao GTP
9.
Hypertension ; 60(2): 476-86, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22753205

RESUMO

Extracellular superoxide dismutase (SOD3) is a secretory copper enzyme involved in protecting angiotensin II (Ang II)-induced hypertension. We found previously that Ang II upregulates SOD3 expression and activity as a counterregulatory mechanism; however, underlying mechanisms are unclear. Antioxidant 1 (Atox1) is shown to act as a copper-dependent transcription factor, as well as a copper chaperone, for SOD3 in vitro, but its role in Ang II-induced hypertension in vivo is unknown. Here we show that Ang II infusion increases Atox1 expression, as well as SOD3 expression and activity, in aortas of wild-type mice, which are inhibited in mice lacking Atox1. Accordingly, Ang II increases vascular superoxide production, reduces endothelium-dependent vasodilation, and increases vasoconstriction in mesenteric arteries to a greater extent in Atox1(-/-) than in wild-type mice. This contributes to augmented hypertensive response to Ang II in Atox1(-/-) mice. In cultured vascular smooth muscle cells, Ang II promotes translocation of Atox1 to the nucleus, thereby increasing SOD3 transcription by binding to Atox1-responsive element in the SOD3 promoter. Furthermore, Ang II increases Atox1 binding to the copper exporter ATP7A, which obtains copper from Atox1, as well as translocation of ATP7A to plasma membranes, where it colocalizes with SOD3. As its consequence, Ang II decreases vascular copper levels, which is inhibited in Atox1(-/-) mice. In summary, Atox1 functions to prevent Ang II-induced endothelial dysfunction and hypercontraction in resistant vessels, as well as hypertension, in vivo by reducing extracellular superoxide levels via increasing vascular SOD3 expression and activity.


Assuntos
Angiotensina II/efeitos adversos , Proteínas de Transporte de Cátions/metabolismo , Hipertensão/induzido quimicamente , Hipertensão/metabolismo , Chaperonas Moleculares/metabolismo , Superóxido Dismutase/metabolismo , Adenosina Trifosfatases/metabolismo , Angiotensina II/farmacologia , Animais , Aorta/efeitos dos fármacos , Aorta/metabolismo , Pressão Sanguínea/efeitos dos fármacos , Pressão Sanguínea/fisiologia , Proteínas de Transporte de Cátions/deficiência , Proteínas de Transporte de Cátions/genética , Cobre/metabolismo , Proteínas de Transporte de Cobre , ATPases Transportadoras de Cobre , Modelos Animais de Doenças , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Chaperonas Moleculares/genética , Músculo Liso Vascular/efeitos dos fármacos , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/patologia , Oxigênio/metabolismo
10.
Stem Cells ; 30(5): 923-34, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22290850

RESUMO

Bone marrow (BM) microenvironment, which is regulated by hypoxia and proteolytic enzymes, is crucial for stem/progenitor cell function and mobilization involved in postnatal neovascularization. We demonstrated that NADPH oxidase 2 (Nox2)-derived reactive oxygen species (ROS) are involved in postischemic mobilization of BM cells and revascularization. However, role of Nox2 in regulating BM microenvironment in response to ischemic injury remains unknown. Here, we show that hindlimb ischemia of mice increases ROS production in both the endosteal and central region of BM tissue in situ, which is almost completely abolished in Nox2 knockout (KO) mice. This Nox2-dependent ROS production is mainly derived from Gr-1(+) myeloid cells in BM. In vivo injection of hypoxyprobe reveals that endosteum at the BM is hypoxic with high expression of hypoxia-inducible factor-1α in basal state. Following hindlimb ischemia, hypoxic areas and HIF-1α expression are expanded throughout the BM, which is inhibited in Nox2 KO mice. This ischemia-induced alteration of Nox2-dependent BM microenvironment is associated with an increase in vascular endothelial growth factor expression and Akt phosphorylation in BM tissue, thereby promoting Lin(-) progenitor cell survival and expansion, leading to their mobilization from BM. Furthermore, hindlimb ischemia increases proteolytic enzymes membrane type 1-matrix metalloproteinase (MMP) expression and MMP-9 activity in BM, which is inhibited in Nox2 KO mice. In summary, Nox2-dependent increase in ROS plays a critical role in regulating hypoxia expansion and proteolytic activities in BM microenvironment in response to tissue ischemia. This in turn promotes progenitor cell expansion and reparative mobilization from BM, leading to postischemic neovascularization and tissue repair.


Assuntos
Medula Óssea/enzimologia , Membro Posterior/irrigação sanguínea , Isquemia/enzimologia , Glicoproteínas de Membrana/metabolismo , NADPH Oxidases/metabolismo , Regeneração , Nicho de Células-Tronco , Células-Tronco/enzimologia , Animais , Medula Óssea/patologia , Membro Posterior/metabolismo , Membro Posterior/patologia , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Isquemia/genética , Isquemia/patologia , Glicoproteínas de Membrana/genética , Camundongos , Camundongos Knockout , NADPH Oxidase 2 , NADPH Oxidases/genética , Fosforilação/genética , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Células-Tronco/patologia
11.
Am J Physiol Heart Circ Physiol ; 302(3): H724-32, 2012 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-22101521

RESUMO

p66Shc, a longevity adaptor protein, is demonstrated as a key regulator of reactive oxygen species (ROS) metabolism involved in aging and cardiovascular diseases. Vascular endothelial growth factor (VEGF) stimulates endothelial cell (EC) migration and proliferation primarily through the VEGF receptor-2 (VEGFR2). We have shown that ROS derived from Rac1-dependent NADPH oxidase are involved in VEGFR2 autophosphorylation and angiogenic-related responses in ECs. However, a role of p66Shc in VEGF signaling and physiological responses in ECs is unknown. Here we show that VEGF promotes p66Shc phosphorylation at Ser36 through the JNK/ERK or PKC pathway as well as Rac1 binding to a nonphosphorylated form of p66Shc in ECs. Depletion of endogenous p66Shc with short interfering RNA inhibits VEGF-induced Rac1 activity and ROS production. Fractionation of caveolin-enriched lipid raft demonstrates that p66Shc plays a critical role in VEGFR2 phosphorylation in caveolae/lipid rafts as well as downstream p38MAP kinase activation. This in turn stimulates VEGF-induced EC migration, proliferation, and capillary-like tube formation. These studies uncover a novel role of p66Shc as a positive regulator for ROS-dependent VEGFR2 signaling linked to angiogenesis in ECs and suggest p66Shc as a potential therapeutic target for various angiogenesis-dependent diseases.


Assuntos
Células Endoteliais/enzimologia , Sistema de Sinalização das MAP Quinases/fisiologia , Neovascularização Fisiológica/fisiologia , Espécies Reativas de Oxigênio/metabolismo , Proteínas Adaptadoras da Sinalização Shc/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Cavéolas/enzimologia , Células Endoteliais/citologia , Células Endoteliais da Veia Umbilical Humana , Humanos , Microdomínios da Membrana/enzimologia , Fosforilação/efeitos dos fármacos , Proteína 1 de Transformação que Contém Domínio 2 de Homologia de Src , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Proteínas rac1 de Ligação ao GTP/metabolismo
12.
Free Radic Res ; 45(10): 1124-35, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21740309

RESUMO

Reactive oxygen species (ROS) are important mediators for VEGF receptor 2 (VEGFR2) signalling involved in angiogenesis. The initial product of Cys oxidation, cysteine sulfenic acid (Cys-OH), is a key intermediate in redox signal transduction; however, its role in VEGF signalling is unknown. We have previously demonstrated IQGAP1 as a VEGFR2 binding scaffold protein involved in ROS-dependent EC migration and post-ischemic angiogenesis. Using a biotin-labelled Cys-OH trapping reagent, we show that VEGF increases protein-Cys-OH formation at the lamellipodial leading edge where it co-localizes with NADPH oxidase and IQGAP1 in migrating ECs, which is prevented by IQGAP1 siRNA or trapping of Cys-OH with dimedone. VEGF increases IQGAP1-Cys-OH formation, which is prevented by N-acetyl cysteine or dimedone, which inhibits VEGF-induced EC migration and capillary network formation. In vivo, hindlimb ischemia in mice increases Cys-OH formation in small vessels and IQGAP1 in ischemic tissues. In summary, VEGF stimulates localized formation of Cys-OH-IQGAP1 at the leading edge, thereby promoting directional EC migration, which may contribute to post-natal angiogenesis in vivo. Thus, targeting Cys-oxidized proteins at specific compartments may be the potential therapeutic strategy for various angiogenesis-dependent diseases.


Assuntos
Movimento Celular/fisiologia , Cisteína/análogos & derivados , Células Endoteliais/citologia , Células Endoteliais/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Actinas/metabolismo , Animais , Movimento Celular/efeitos dos fármacos , Cisteína/biossíntese , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Microscopia Confocal , NADPH Oxidases/metabolismo , Neovascularização Fisiológica/efeitos dos fármacos , Neovascularização Fisiológica/fisiologia , RNA Interferente Pequeno/administração & dosagem , RNA Interferente Pequeno/genética , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais , Ácidos Sulfênicos , Transfecção , Fator A de Crescimento do Endotélio Vascular/farmacologia , Proteínas Ativadoras de ras GTPase/biossíntese , Proteínas Ativadoras de ras GTPase/genética , Proteínas Ativadoras de ras GTPase/metabolismo
13.
PLoS One ; 5(10): e13440, 2010 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-20976168

RESUMO

BACKGROUND: Neovascularization is an important repair mechanism in response to ischemic injury and is dependent on inflammation, angiogenesis and reactive oxygen species (ROS). IQGAP1, an actin-binding scaffold protein, is a key regulator for actin cytoskeleton and motility. We previously demonstrated that IQGAP1 mediates vascular endothelial growth factor (VEGF)-induced ROS production and migration of cultured endothelial cells (ECs); however, its role in post-ischemic neovascularization is unknown. METHODOLOGY/PRINCIPAL FINDINGS: Ischemia was induced by left femoral artery ligation, which resulted in increased IQGAP1 expression in Mac3(+) macrophages and CD31(+) capillary-like ECs in ischemic legs. Mice lacking IQGAP1 exhibited a significant reduction in the post-ischemic neovascularization as evaluated by laser Doppler blood flow, capillary density and α-actin positive arterioles. Furthermore, IQGAP1(-/-) mice showed a decrease in macrophage infiltration and ROS production in ischemic muscles, leading to impaired muscle regeneration and increased necrosis and fibrosis. The numbers of bone marrow (BM)-derived cells in the peripheral blood were not affected in these knockout mice. BM transplantation revealed that IQGAP1 expressed in both BM-derived cells and tissue resident cells, such as ECs, is required for post-ischemic neovascularization. Moreover, thioglycollate-induced peritoneal macrophage recruitment and ROS production were inhibited in IQGAP1(-/-) mice. In vitro, IQGAP1(-/-) BM-derived macrophages showed inhibition of migration and adhesion capacity, which may explain the defective macrophage recruitment into the ischemic tissue in IQGAP1(-/-) mice. CONCLUSIONS/SIGNIFICANCE: IQGAP1 plays a key role in post-ischemic neovascularization by regulating, not only, ECs-mediated angiogenesis but also macrophage infiltration as well as ROS production. Thus, IQGAP1 is a potential therapeutic target for inflammation- and angiogenesis-dependent ischemic cardiovascular diseases.


Assuntos
Macrófagos/patologia , Neovascularização Patológica , Proteínas Ativadoras de ras GTPase/fisiologia , Animais , Camundongos , Camundongos Knockout , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Proteínas Ativadoras de ras GTPase/genética
14.
Circ Res ; 107(6): 787-99, 2010 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-20671235

RESUMO

RATIONALE: Copper, an essential nutrient, has been implicated in vascular remodeling and atherosclerosis with unknown mechanism. Bioavailability of intracellular copper is regulated not only by the copper importer CTR1 (copper transporter 1) but also by the copper exporter ATP7A (Menkes ATPase), whose function is achieved through copper-dependent translocation from trans-Golgi network (TGN). Platelet-derived growth factor (PDGF) promotes vascular smooth muscle cell (VSMC) migration, a key component of neointimal formation. OBJECTIVE: To determine the role of copper transporter ATP7A in PDGF-induced VSMC migration. METHODS AND RESULTS: Depletion of ATP7A inhibited VSMC migration in response to PDGF or wound scratch in a CTR1/copper-dependent manner. PDGF stimulation promoted ATP7A translocation from the TGN to lipid rafts, which localized at the leading edge, where it colocalized with PDGF receptor and Rac1, in migrating VSMCs. Mechanistically, ATP7A small interfering RNA or CTR small interfering RNA prevented PDGF-induced Rac1 translocation to the leading edge, thereby inhibiting lamellipodia formation. In addition, ATP7A depletion prevented a PDGF-induced decrease in copper level and secretory copper enzyme precursor prolysyl oxidase (Pro-LOX) in lipid raft fraction, as well as PDGF-induced increase in LOX activity. In vivo, ATP7A expression was markedly increased and copper accumulation was observed by synchrotron-based x-ray fluorescence microscopy at neointimal VSMCs in wire injury model. CONCLUSIONS: These findings suggest that ATP7A plays an important role in copper-dependent PDGF-stimulated VSMC migration via recruiting Rac1 to lipid rafts at the leading edge, as well as regulating LOX activity. This may contribute to neointimal formation after vascular injury. Our findings provide insight into ATP7A as a novel therapeutic target for vascular remodeling and atherosclerosis.


Assuntos
Adenosina Trifosfatases/fisiologia , Proteínas de Transporte de Cátions/fisiologia , Movimento Celular/fisiologia , Cobre/metabolismo , Músculo Liso Vascular/enzimologia , Miócitos de Músculo Liso/enzimologia , Fator de Crescimento Derivado de Plaquetas/farmacologia , Animais , Aterosclerose/enzimologia , Aterosclerose/patologia , Células Cultivadas , ATPases Transportadoras de Cobre , Humanos , Masculino , Microdomínios da Membrana/enzimologia , Microdomínios da Membrana/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Músculo Liso Vascular/patologia , Músculo Liso Vascular/fisiologia , Miócitos de Músculo Liso/patologia , Miócitos de Músculo Liso/fisiologia , Ratos , Ratos Sprague-Dawley
15.
Free Radic Biol Med ; 46(1): 95-104, 2009 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-18977292

RESUMO

Extracellular superoxide dismutase (SOD3), a secretory copper-containing antioxidant enzyme, plays an important role in various oxidative stress-dependent cardiovascular diseases. Although cofactor copper is required for SOD3 activity, it remains unknown whether it can regulate SOD3 transcription. We previously demonstrated that SOD3 activity requires the copper chaperone antioxidant-1 (Atox1), involved in copper delivery to SOD3 at the trans-Golgi network (TGN). Here we show that copper treatment in mouse fibroblasts significantly increases mRNA and protein levels of SOD3, but not SOD1, which is abolished in Atox1-deficient cells. Copper promotes Atox1 translocation to the nucleus. Promoter deletion analysis identifies copper- and Atox1-response elements (REs) at the SOD3 promoter. Gel-shift and ChIP assays reveal that Atox1 directly binds to the Atox1 RE in a copper-dependent manner in vitro and in vivo. Adenovirus-mediated reexpression in Atox1(-/-) cells of nucleus-targeted Atox1 (Atox1-NLS), but not TGN-targeted Atox1 (Atox1-TGN), increases SOD3 transcription without affecting SOD3 activity. Importantly, reexpression of both Atox1-NLS and Atox1-TGN together, but not either alone, in Atox1(-/-) cells increases SOD3 activity. SOD3 transcription is positively regulated by copper through the transcription factor function of Atox1, whereas the full activity of SOD3 requires both the copper chaperone and the transcription factor functions of Atox1. Thus, Atox1 is a potential therapeutic target for oxidant stress-dependent cardiovascular disease.


Assuntos
Proteínas de Transporte de Cátions/metabolismo , Cobre/farmacologia , Fibroblastos/enzimologia , Chaperonas Moleculares/metabolismo , Proteínas Recombinantes de Fusão/metabolismo , Superóxido Dismutase/metabolismo , Ativação Transcricional/efeitos dos fármacos , Animais , Proteínas de Transporte de Cátions/genética , Linhagem Celular Transformada , Proteínas de Transporte de Cobre , Ativação Enzimática/efeitos dos fármacos , Fibroblastos/efeitos dos fármacos , Técnicas de Inativação de Genes , Camundongos , Chaperonas Moleculares/genética , Sinais de Localização Nuclear/genética , Análise de Sequência com Séries de Oligonucleotídeos , Estresse Oxidativo , Regiões Promotoras Genéticas , Ligação Proteica , Transporte Proteico/genética , Proteínas Recombinantes de Fusão/genética , Elementos de Resposta , Superóxido Dismutase/genética , Superóxido Dismutase-1 , Transdução Genética , Rede trans-Golgi
16.
J Biol Chem ; 283(14): 9157-67, 2008 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-18245776

RESUMO

Copper plays a fundamental role in regulating cell growth. Many types of human cancer tissues have higher copper levels than normal tissues. Copper can also induce gene expression. However, transcription factors that mediate copper-induced cell proliferation have not been identified in mammals. Here we show that antioxidant-1 (Atox1), previously appreciated as a copper chaperone, represents a novel copper-dependent transcription factor that mediates copper-induced cell proliferation. Stimulation of mouse embryonic fibroblasts (MEFs) with copper markedly increased cell proliferation, cyclin D1 expression, and entry into S phase, which were completely abolished in Atox1(-/-) MEFs. Promoter analysis and EMSA revealed that copper stimulates the Atox1 binding to a previously undescribed cis element in the cyclin D1 promoter. The ChIP assay confirms that copper stimulates Atox1 binding to the DNA in vivo. Transfection of Atox1 fused to the DNA-binding domain of Gal4 demonstrated a copper-dependent transactivation in various cell types, including endothelial and cancer cells. Furthermore, Atox1 translocated to the nucleus in response to copper through its highly conserved C-terminal KKTGK motif and N-terminal copper-binding sites. Finally, the functional role of nuclear Atox1 is demonstrated by the observation that re-expression of nuclear-targeted Atox1 in Atox1(-/-) MEFs rescued the defective copper-induced cell proliferation. Thus, Atox1 functions as a novel transcription factor that, when activated by copper, undergoes nuclear translocation, DNA binding, and transactivation, thereby contributing to cell proliferation.


Assuntos
Proteínas de Transporte de Cátions/metabolismo , Núcleo Celular/metabolismo , Cobre/farmacologia , Chaperonas Moleculares/metabolismo , Fase S/efeitos dos fármacos , Fatores de Transcrição/metabolismo , Transporte Ativo do Núcleo Celular/efeitos dos fármacos , Transporte Ativo do Núcleo Celular/genética , Motivos de Aminoácidos/genética , Animais , Proteínas de Transporte de Cátions/genética , Linhagem Celular Transformada , Núcleo Celular/genética , Cobre/metabolismo , Proteínas de Transporte de Cobre , Ciclina D , Ciclinas/genética , Ciclinas/metabolismo , Embrião de Mamíferos/metabolismo , Fibroblastos/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/genética , Humanos , Metalochaperonas , Camundongos , Camundongos Knockout , Chaperonas Moleculares/genética , Neoplasias/genética , Neoplasias/metabolismo , Regiões Promotoras Genéticas/genética , Fase S/genética , Fatores de Transcrição/genética
17.
Circulation ; 115(15): 2033-41, 2007 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-17404155

RESUMO

BACKGROUND: Transport rates of long-chain free fatty acids into mitochondria via carnitine palmitoyltransferase I relative to overall oxidative rates in hypertrophied hearts remain poorly understood. Furthermore, the extent of glucose oxidation, despite increased glycolysis in hypertrophy, remains controversial. The present study explores potential compensatory mechanisms to sustain tricarboxylic acid cycle flux that resolve the apparent discrepancy of reduced fatty acid oxidation without increased glucose oxidation through pyruvate dehydrogenase complex in the energy-poor, hypertrophied heart. METHODS AND RESULTS: We studied flux through the oxidative metabolism of intact adult rat hearts subjected to 10 weeks of pressure overload (hypertrophied; n=9) or sham operation (sham; n=8) using dynamic 13C-nuclear magnetic resonance. Isolated hearts were perfused with [2,4,6,8,10,12,14,16-(13)C8] palmitate (0.4 mmol/L) plus glucose (5 mmol/L) in a 14.1-T nuclear magnetic resonance magnet. At similar tricarboxylic acid cycle rates, flux through carnitine palmitoyltransferase I was 23% lower in hypertrophied (P<0.04) compared with sham hearts and corresponded to a shift toward increased expression of the L-carnitine palmitoyltransferase I isoform. Glucose oxidation via pyruvate dehydrogenase complex did not compensate for reduced palmitate oxidation rates. However, hypertrophied rats displayed an 83% increase in anaplerotic flux into the tricarboxylic acid cycle (P<0.03) that was supported by glycolytic pyruvate, coincident with increased mRNA transcript levels for malic enzyme. CONCLUSIONS: In cardiac hypertrophy, fatty acid oxidation rates are reduced, whereas compensatory increases in anaplerosis maintain tricarboxylic acid cycle flux and account for a greater portion of glucose oxidation than previously recognized. The shift away from acetyl coenzyme A production toward carbon influx via anaplerosis bypasses energy, yielding reactions contributing to a less energy-efficient heart.


Assuntos
Cardiomegalia/metabolismo , Carnitina O-Palmitoiltransferase/metabolismo , Metabolismo Energético , Transdução de Sinais , Animais , Ciclo do Ácido Cítrico , Glucose/metabolismo , Testes de Função Cardíaca , Masculino , Técnicas de Cultura de Órgãos , Oxirredução , Ácido Palmítico/metabolismo , Ratos , Ratos Sprague-Dawley , Transdução de Sinais/fisiologia
18.
Am J Physiol Heart Circ Physiol ; 291(2): H957-64, 2006 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-16603692

RESUMO

Hypoxia-inducible factor-1 alpha (HIF-1 alpha) plays a role in a number of cell-protective pathways after ischemia. There are clear sex-related differences in the remodeling process, and hearts from males tend to dilate in response to pathological loads and ischemia to a greater degree than do hearts from females. Thus we hypothesized that there would be a sex-related dimorphic response of HIF-1 alpha to an ischemic event. Male and female rats were euthanized 5 and 24 h after coronary ligation (M-MI and F-MI; MI, myocardial ischemia), and HIF-1 alpha expression was determined by immunohistochemistry, Western blot, and quantitative RT-PCR. Sham-operated male and female animals served as controls (M-SH and F-SH). In the ischemic area, histochemical analysis at 5 h showed that HIF was expressed in 33% of cell nuclei in M-MI and in 55% in F-MI. At 24 h, HIF expression increased to 49% in M-MI and to 82% in F-MI (P < 0.05 vs. SH and also M-MI vs. F-MI). This difference was not only statistically significant between the two sexes at 24 h but also within each sex at 5 and 24 h after ligation. Western blots confirmed that, at 24 h after ischemia, HIF protein increased significantly in both male and female hearts relative to sham-operated animals but that the increase in females was 60% greater than that seen in males. mRNA expression of HIF was significantly increased at 24 h in F-MI versus M-MI and sham-operated animals. Expression of downstream HIF target genes (heme oxygenase and brain natriuretic peptide) was increased in proportion to the levels of HIF expression. These data suggest a novel cellular mechanism to explain the sex-related dimorphic response to ischemia and also the possibility that exogenous modulation of HIF might represent a new therapeutic approach to preventing left ventricular remodeling.


Assuntos
Fator 1 Induzível por Hipóxia/biossíntese , Isquemia Miocárdica/metabolismo , Animais , Feminino , Expressão Gênica/efeitos dos fármacos , Expressão Gênica/fisiologia , Imuno-Histoquímica , Masculino , Isquemia Miocárdica/patologia , Miocárdio/metabolismo , Nitroimidazóis/farmacologia , RNA/biossíntese , RNA/genética , Ratos , Ratos Wistar , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Caracteres Sexuais , Remodelação Ventricular/fisiologia
19.
Am J Physiol Heart Circ Physiol ; 289(6): H2478-83, 2005 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-16085678

RESUMO

Diabetes mellitus is associated with a distinct cardiomyopathy. Whether cardiac myofilament function is altered in human diabetes mellitus is unknown. Myocardial biopsies were obtained from seven diabetic patients and five control, nondiabetic patients undergoing coronary artery bypass surgery. Myofilament function was assessed by determination of the developed force-Ca2+ concentration relation in skinned cardiac cells from flash-frozen human biopsies. Separate control experiments revealed that flash freezing of biopsy specimens did not affect myofilament function. All patients in the diabetes mellitus cohort were classified as Type 2 diabetes mellitus patients, and most showed signs of diastolic dysfunction. Diabetes mellitus was associated with depressed myofilament function, that is, decreased Ca2+ sensitivity (29%, P < 0.05 vs. control) and a trend toward reduction of maximum Ca2+-saturated force (29%, P = 0.08 vs. control). The slope of the force-Ca2+ concentration relation (Hill coefficient) was not affected by diabetes, however. We conclude that human diabetes mellitus is associated with decreased cardiac myofilament function. Depressed cardiac myofilament Ca2+ responsiveness may underlie the decreased ventricular function characteristic of human diabetic cardiomyopathy.


Assuntos
Citoesqueleto de Actina , Diabetes Mellitus Tipo 2/fisiopatologia , Fibras Musculares Esqueléticas , Contração Miocárdica , Miócitos Cardíacos , Disfunção Ventricular Esquerda/fisiopatologia , Idoso , Diabetes Mellitus Tipo 2/complicações , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Disfunção Ventricular Esquerda/etiologia
20.
Circ Res ; 95(4): 424-32, 2004 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-15242976

RESUMO

We report characterization of a transgenic mouse that overexpresses constitutively active protein kinase Cepsilon in the heart and slowly develops a dilated cardiomyopathy with failure. The hemodynamic, mechanical, and biochemical properties of these hearts demonstrate a series of temporal events that mark the progression of the disease. In the 3-month transgenic (TG) animals, contractile properties and gene expression measurements are normal, but an increase in myofibrillar Ca2+ sensitivity and thin filament protein phosphorylation is noted. At 6 months, there is a decrease in the myofibrillar Ca2+ sensitivity, a significant increase in beta-myosin heavy chain mRNA and protein, normal cardiac function, but a blunted response to an inotropic challenge. The transition at 9 months is especially interesting because age-related changes appear to contribute to the decline in function seen in the TG heart. At this point, there is a decline in baseline function and maximum tension produced by the myofibrils, which is coincident with the onset of atrial myosin light chain isoform re-expression in the ventricles. In the 12-month TG mice, there is clear hemodynamic and geometric evidence of failure. Alterations in the composition of the myofibrils persist but the phosphorylation of myosin light chain 2v is dramatically different at this age compared with all others. We interpret these data to implicate the disruption of the myofibrillar proteins and their interactions in the propagation of dilated cardiac disease.


Assuntos
Citoesqueleto de Actina/ultraestrutura , Cardiomiopatia Dilatada/enzimologia , Insuficiência Cardíaca/enzimologia , Proteína Quinase C/fisiologia , Citoesqueleto de Actina/química , Animais , Cálcio/farmacologia , Cardiomiopatia Dilatada/complicações , Cardiomiopatia Dilatada/genética , Cardiotônicos/farmacologia , Progressão da Doença , Dobutamina/farmacologia , Resistência a Medicamentos/genética , Indução Enzimática , Insuficiência Cardíaca/etiologia , Camundongos , Camundongos Transgênicos , Contração Miocárdica/efeitos dos fármacos , Miocárdio/enzimologia , Cadeias Pesadas de Miosina/biossíntese , Cadeias Pesadas de Miosina/genética , Cadeias Leves de Miosina/metabolismo , Osteopontina , Fosforilação , Proteína Quinase C/biossíntese , Proteína Quinase C/genética , Proteína Quinase C-épsilon , Processamento de Proteína Pós-Traducional , RNA Mensageiro/biossíntese , Proteínas Recombinantes de Fusão/biossíntese , Proteínas Recombinantes de Fusão/fisiologia , Sialoglicoproteínas/biossíntese , Sialoglicoproteínas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...