Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Dev Genet ; 22(1): 17-30, 1998.
Artigo em Inglês | MEDLINE | ID: mdl-9499577

RESUMO

A unique characteristic of the oocyte is that, although it is a differentiated cell, it can to give rise to a population of undifferentiated embryonic cells. This transition from a differentiated to a totipotential condition is thought to be mediated in part by changes in chromatin composition or configuration. In many non-mammalian organisms, oocytes contain unique subtypes of the linker histone H1, which are replaced in early embryos by the so-called somatic histone H1 subtypes. We review evidence that such histone H1 subtype switches also occur in mammals. Immunologically detectable somatic H1 is present in mitotically proliferating oogonia but gradually becomes undetectable after the oocytes enter meiosis. Immunoreactive somatic H1 remains undetectable throughout oogenesis and the early cell cycles after fertilization. Following activation of the embryonic genome, it is assembled onto chromatin. In contrast to the absence of immunoreactive protein, mRNAs encoding each of the five mammalian somatic H1 subtypes are present in growing oocytes and newly fertilized embryos, indicating that post-transcriptional mechanisms regulate expression of these genes. This maternal mRNA is degraded at the late 2-cell stage, and embryonically encoded mRNAs accumulate after embryos reach the 4-cell stage. During the period when somatic H1 is not detectable, oocytes and embryos contain mRNA encoding a sixth subtype, histone H1(0) which accumulates in differentiated somatic cells, and the nuclei can be stained with an H1(0)-specific antibody. We propose that the linker histone composition of the oocyte lineage resembles that of other mammalian cells, namely, that the somatic H1 subtypes predominate in mitotically active oogonia, that histone H1(0) becomes prominent in differentiated oocytes, and that following fertilization and transcriptional activation of the embryonic somatic H1 genes, the somatic H1 subtypes are reassembled onto chromatin of the embryonic cells. Potential functions of these linker histone subtype switches are discussed, including stabilization by H1(0) of the differentiated state of the oocytes, protection of the oocyte chromatin from factors that remodel sperm chromatin after fertilization, and restoration by the incorporation of the somatic H1 subtypes of the totipotential state of embryonic nuclei.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Histonas/metabolismo , Mamíferos/embriologia , Oogênese/fisiologia , Animais , Embrião não Mamífero/fisiologia , Desenvolvimento Embrionário e Fetal/fisiologia , Genoma
2.
Dev Biol ; 186(1): 73-84, 1997 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-9188754

RESUMO

Following fertilization of meiotically mature eggs, the chromatin of the sperm becomes biochemically and structurally remodeled within the egg cytoplasm. Despite the essential role of the paternal genome during embryogenesis, little is known of when the activities that regulate this chromatin remodeling appear during oogenesis. To determine whether these activities were acquired during meiotic maturation, we inseminated maturing oocytes of mice shortly after germinal vesicle breakdown. As previously shown, insemination at this stage did not activate the maturing oocytes, which became arrested at metaphase II. Immunofluorescent analysis revealed that at 1 hr postinsemination the sperm chromatin was dispersed and contained protamines but was devoid of core histones H2B and H3. At 4 hr postinsemination, both protamine and core histones were detectable on the sperm chromatin. By 8 hr postinsemination protamines were absent, and histones stained maximally. The appearance of immunoreactive histones was correlated with a morphological transition of the sperm chromatin from the dispersed to a condensed state, which suggests that the assembly of the histones reflected modification of the chromatin to a somatic-like state in which it was competent to respond to the metaphase-promoting factor activity of the oocyte. Both the assembly of histones and chromatin condensation were reversibly blocked when protein synthesis was inhibited, indicating that the remodeling process required proteins synthesized during maturation. Injection of core histones into protein synthesis-inhibited oocytes failed to induce condensation of the sperm chromatin, which implies that correct remodeling requires synthesis during maturation of nonhistone proteins. To test the functional capacity of remodeled sperm chromatin, maturing oocytes were inseminated, allowed to continue maturation for 17 hr and then parthenogenetically activated. Following activation, the sperm-derived chromatin as well as that of the oocyte became decondensed within pronuclei and underwent DNA replication, indicating that sperm chromatin remodeled in maturing oocyte cytoplasm was functionally normal. When the postinsemination incubation time was reduced to 11 hr; however, neither the female nor the male pronuclei underwent DNA replication, implying that factors synthesized late during maturation are required for DNA replication after activation. Taken together, these results indicate that the ability to organize sperm DNA into functional somatic-like chromatin develops in oocytes during meiotic maturation, requires proteins synthesized during maturation, and can be expressed independently of activation.


Assuntos
Cromatina/fisiologia , DNA/fisiologia , Meiose/fisiologia , Oócitos/fisiologia , Interações Espermatozoide-Óvulo/fisiologia , Espermatozoides/fisiologia , Animais , Núcleo Celular/metabolismo , Cromatina/química , DNA/biossíntese , Replicação do DNA/fisiologia , Feminino , Histonas/análise , Histonas/metabolismo , Masculino , Camundongos , Oócitos/citologia , Biossíntese de Proteínas , Espermatozoides/química , Espermatozoides/citologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...