Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
STAR Protoc ; 2(4): 100866, 2021 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-34647038

RESUMO

This protocol features parallel isolation of myocytes and non-myocytes from murine hearts. It was designed with considerations for (1) time required to extract cardiac cells, (2) cell viability, and (3) protocol scalability. Here, a peristaltic pump and 3D-printed elements are combined to perfuse the heart with enzymes to dissociate cells. Myocytes and non-myocytes extracted using this protocol are separated by centrifugation and/or fluorescence-activated cell sorting for use in downstream applications including single-cell omics or other bio-molecular analyses. For complete details on the use and execution of this protocol, please refer to McLellan et al. (2020).


Assuntos
Separação Celular/métodos , Miocárdio/citologia , Miócitos Cardíacos , Análise de Célula Única/métodos , Animais , Técnicas de Cultura de Células , Células Cultivadas , Genômica , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Miócitos Cardíacos/classificação , Miócitos Cardíacos/citologia
3.
Int J Mol Sci ; 22(4)2021 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-33669808

RESUMO

Recent technological advances have revolutionized the study of tissue biology and garnered a greater appreciation for tissue complexity. In order to understand cardiac development, heart tissue homeostasis, and the effects of stress and injury on the cardiovascular system, it is essential to characterize the heart at high cellular resolution. Single-cell profiling provides a more precise definition of tissue composition, cell differentiation trajectories, and intercellular communication, compared to classical bulk approaches. Here, we aim to review how recent single-cell multi-omic studies have changed our understanding of cell dynamics during cardiac development, and in the healthy and diseased adult myocardium.


Assuntos
Sistema Cardiovascular/citologia , Análise de Célula Única , Transcriptoma/genética , Animais , COVID-19/genética , COVID-19/patologia , Reprogramação Celular/genética , Desenvolvimento Embrionário/genética , Humanos
4.
Cardiovasc Res ; 117(10): 2252-2262, 2021 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-32941598

RESUMO

AIMS: Sex differences have been consistently identified in cardiac physiology and incidence of cardiac disease. However, the underlying biological causes for the differences remain unclear. We sought to characterize the cardiac non-myocyte cellular landscape in female and male hearts to determine whether cellular proportion of the heart is sex-dependent and whether endocrine factors modulate the cardiac cell proportions. METHODS AND RESULTS: Utilizing high-dimensional flow cytometry and immunofluorescence imaging, we found significant sex-specific differences in cellular composition of the heart in adult and juvenile mice, that develops postnatally. Removal of systemic gonadal hormones by gonadectomy results in rapid sex-specific changes in cardiac non-myocyte cellular proportions including alteration in resident mesenchymal cell and leucocyte populations, indicating gonadal hormones and their downstream targets regulate cardiac cellular composition. The ectopic reintroduction of oestrogen and testosterone to female and male mice, respectively, reverses many of these gonadectomy-induced compositional changes. CONCLUSION: This work shows that the constituent cell types of the mouse heart are hormone-dependent and that the cardiac cellular landscapes are distinct in females and males, remain plastic, and can be rapidly modulated by endocrine factors. These observations have implications for strategies aiming to therapeutically alter cardiac cellular heterogeneity and underscore the importance of considering biological sex for studies examining cardiac physiology and stress responses.


Assuntos
Estradiol/metabolismo , Miocárdio/metabolismo , Testosterona/metabolismo , Fatores Etários , Animais , Separação Celular , Estradiol/farmacologia , Terapia de Reposição de Estrogênios , Feminino , Citometria de Fluxo , Imunofluorescência , Masculino , Camundongos Endogâmicos C57BL , Miocárdio/citologia , Orquiectomia , Ovariectomia , RNA-Seq , Caracteres Sexuais , Análise de Célula Única , Testosterona/farmacologia , Transcriptoma
5.
Circulation ; 142(15): 1448-1463, 2020 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-32795101

RESUMO

BACKGROUND: Cardiac fibrosis is a key antecedent to many types of cardiac dysfunction including heart failure. Physiological factors leading to cardiac fibrosis have been recognized for decades. However, the specific cellular and molecular mediators that drive cardiac fibrosis, and the relative effect of disparate cell populations on cardiac fibrosis, remain unclear. METHODS: We developed a novel cardiac single-cell transcriptomic strategy to characterize the cardiac cellulome, the network of cells that forms the heart. This method was used to profile the cardiac cellular ecosystem in response to 2 weeks of continuous administration of angiotensin II, a profibrotic stimulus that drives pathological cardiac remodeling. RESULTS: Our analysis provides a comprehensive map of the cardiac cellular landscape uncovering multiple cell populations that contribute to pathological remodeling of the extracellular matrix of the heart. Two phenotypically distinct fibroblast populations, Fibroblast-Cilp and Fibroblast-Thbs4, emerged after induction of tissue stress to promote fibrosis in the absence of smooth muscle actin-expressing myofibroblasts, a key profibrotic cell population. After angiotensin II treatment, Fibroblast-Cilp develops as the most abundant fibroblast subpopulation and the predominant fibrogenic cell type. Mapping intercellular communication networks within the heart, we identified key intercellular trophic relationships and shifts in cellular communication after angiotensin II treatment that promote the development of a profibrotic cellular microenvironment. Furthermore, the cellular responses to angiotensin II and the relative abundance of fibrogenic cells were sexually dimorphic. CONCLUSIONS: These results offer a valuable resource for exploring the cardiac cellular landscape in health and after chronic cardiovascular stress. These data provide insights into the cellular and molecular mechanisms that promote pathological remodeling of the mammalian heart, highlighting early transcriptional changes that precede chronic cardiac fibrosis.


Assuntos
Cardiomegalia/metabolismo , Fibroblastos/metabolismo , Perfilação da Expressão Gênica , Miocárdio/metabolismo , Análise de Célula Única , Estresse Fisiológico , Animais , Cardiomegalia/patologia , Fibroblastos/patologia , Fibrose , Camundongos , Miocárdio/patologia , Pirofosfatases/metabolismo , Trombospondinas/metabolismo
6.
Cell Rep ; 22(3): 600-610, 2018 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-29346760

RESUMO

Characterization of the cardiac cellulome, the network of cells that form the heart, is essential for understanding cardiac development and normal organ function and for formulating precise therapeutic strategies to combat heart disease. Recent studies have reshaped our understanding of cardiac cellular composition and highlighted important functional roles for non-myocyte cell types. In this study, we characterized single-cell transcriptional profiles of the murine non-myocyte cardiac cellular landscape using single-cell RNA sequencing (scRNA-seq). Detailed molecular analyses revealed the diversity of the cardiac cellulome and facilitated the development of techniques to isolate understudied cardiac cell populations, such as mural cells and glia. Our analyses also revealed extensive networks of intercellular communication and suggested prevalent sexual dimorphism in gene expression in the heart. This study offers insights into the structure and function of the mammalian cardiac cellulome and provides an important resource that will stimulate studies in cardiac cell biology.


Assuntos
Perfilação da Expressão Gênica/métodos , Análise de Célula Única/métodos , Ativação Transcricional/genética , Animais , Camundongos
7.
Circ Cardiovasc Genet ; 10(6)2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29212899

RESUMO

BACKGROUND: Restrictive cardiomyopathy (RCM) is a rare cardiomyopathy characterized by impaired diastolic ventricular function resulting in a poor clinical prognosis. Rarely, heritable forms of RCM have been reported, and mutations underlying RCM have been identified in genes that govern the contractile function of the cardiomyocytes. METHODS AND RESULTS: We evaluated 8 family members across 4 generations by history, physical examination, electrocardiography, and echocardiography. Affected individuals presented with a pleitropic syndrome of progressive RCM, atrioventricular septal defects, and a high prevalence of atrial fibrillation. Exome sequencing of 5 affected members identified a single novel missense variant in a highly conserved residue of FLNC (filamin C; p.V2297M). FLNC encodes filamin C-a protein that acts as both a scaffold for the assembly and organization of the central contractile unit of striated muscle and also as a mechanosensitive signaling molecule during cell migration and shear stress. Immunohistochemical analysis of FLNC localization in cardiac tissue from an affected family member revealed a diminished localization at the z disk, whereas traditional localization at the intercalated disk was preserved. Stem cell-derived cardiomyocytes mutated to carry the effect allele had diminished contractile activity when compared with controls. CONCLUSION: We have identified a novel variant in FLNC as pathogenic variant for familial RCM-a finding that further expands on the genetic basis of this rare and morbid cardiomyopathy.


Assuntos
Cardiomiopatia Restritiva/genética , Filaminas/genética , Predisposição Genética para Doença , Mutação/genética , Adulto , Idoso , Sequência de Aminoácidos , Sequência de Bases , Cardiomiopatia Restritiva/patologia , Família , Feminino , Filaminas/química , Humanos , Masculino , Pessoa de Meia-Idade , Fenótipo
8.
Curr Protoc Mouse Biol ; 7(1): 1-12, 2017 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-28252198

RESUMO

The cre-loxP-mediated recombination system (the "cre-loxP system") is an integral experimental tool for mammalian genetics and cell biology. Use of the system has greatly expanded our ability to precisely interrogate gene function in the mouse, providing both spatial and temporal control of gene expression. This has been largely due to the simplicity of its use and its adaptability to address diverse biological questions. While the use of the cre-loxP system is becoming increasingly widespread, in particular because of growing availability of conditional mouse mutants, many considerations need to be taken into account when utilizing the cre-loxP system. This review provides an overview of the cre-loxP system and its various permutations. It addresses the limitations of cre-loxP technology and related considerations for experimental design, and it discusses alternative strategies for site-specific genetic recombination and integration. © 2017 by John Wiley & Sons, Inc.


Assuntos
Sítios de Ligação Microbiológicos/genética , Engenharia Genética/métodos , Integrases/genética , Recombinação Genética , Animais , Antibacterianos/farmacologia , Bacteriófago P1/genética , Sequência de Bases , Sítios de Ligação/genética , Doxiciclina/farmacologia , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Ligantes , Camundongos , Modelos Genéticos , Receptores de Estrogênio/genética , Reprodutibilidade dos Testes
9.
Heart Rhythm ; 11(6): 1055-1062, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24607718

RESUMO

BACKGROUND: Atrial fibrillation (AF) is the most common arrhythmia, and a recent genome-wide association study identified the hyperpolarization-activated cyclic nucleotide-gated channel 4 (HCN4) as a novel AF susceptibility locus. HCN4 encodes for the cardiac pacemaker channel, and HCN4 mutations are associated with familial sinus bradycardia and AF. OBJECTIVE: The purpose of this study was to determine whether novel variants in the coding region of HCN4 contribute to the susceptibility for AF. METHODS: We sequenced the coding region of HCN4 for novel variants from 527 cases with early-onset AF from the Massachusetts General Hospital AF Study and 443 referents from the Framingham Heart Study. We used site-directed mutagenesis, cellular electrophysiology, immunocytochemistry, and confocal microscopy to functionally characterize novel variants. RESULTS: We found the frequency of novel coding HCN4 variants was 2-fold greater for individuals with AF (7 variants) compared to the referents (3 variants). We determined that of the 7 novel HCN4 variants in our AF cases, 1 (p.Pro257Ser, located in the amino-terminus adjacent to the first transmembrane spanning domain) did not traffic to cell membrane, whereas the remaining 6 were not functionally different from wild type. In addition, the 3 novel variants in our referents did not alter function compared to wild-type. Coexpression studies showed that the p.Pro257Ser mutant channel failed to colocalize with the wild-type HCN4 channel on the cell membrane. CONCLUSION: Our findings are consistent with HCN4 haploinsufficiency as the likely mechanism for early-onset AF in the p.Pro257Ser carrier.


Assuntos
Fibrilação Atrial/genética , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/genética , Proteínas Musculares/genética , Canais de Potássio/genética , Idade de Início , Animais , Fibrilação Atrial/epidemiologia , Células CHO , Cricetulus , Técnicas Eletrofisiológicas Cardíacas , Feminino , Haploinsuficiência , Humanos , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/metabolismo , Masculino , Microscopia Confocal , Pessoa de Meia-Idade , Proteínas Musculares/metabolismo , Mutagênese Sítio-Dirigida , Canais de Potássio/metabolismo , Transporte Proteico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...