Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
1.
Proc Natl Acad Sci U S A ; 111(6): 2355-60, 2014 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-24474805

RESUMO

Mucociliary transport (MCT) is an innate defense mechanism that removes particulates, noxious material, and microorganisms from the lung. Several airway diseases exhibit abnormal MCT, including asthma, chronic bronchitis, and cystic fibrosis. However, it remains uncertain whether MCT abnormalities contribute to the genesis of disease or whether they are secondary manifestations that may fuel disease progression. Limitations of current MCT assays and of current animal models of human disease have hindered progress in addressing these questions. Therefore, we developed an in vivo assay of MCT, and here we describe its use in newborn wild-type pigs. We studied pigs because they share many physiological, biochemical, and anatomical features with humans and can model several human diseases. We used X-ray multidetector-row-computed tomography to track movement of individual particles in the large airways of newborn pigs. Multidetector-row-computed tomography imaging provided high spatial and temporal resolution and registration of particle position to airway anatomy. We discovered that cilia orientation directs particles to the ventral tracheal surface. We also observed substantial heterogeneity in the rate of individual particle movement, and we speculate that variations in mucus properties may be responsible. The increased granularity of MCT data provided by this assay may provide an opportunity to better understand host defense mechanisms and the pathogenesis of airway disease.


Assuntos
Depuração Mucociliar/fisiologia , Traqueia/fisiologia , Animais , Animais Recém-Nascidos , Suínos
2.
Acad Radiol ; 19(11): 1368-81, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22951110

RESUMO

RATIONALE AND OBJECTIVES: To establish the range of normal for quantitative computed tomography (CT)-based measures of lung structure and function, we seek to develop methods for matching pulmonary structures across individuals and establishing a normative human lung atlas. MATERIALS AND METHODS: In our previous work, we have presented a three-dimensional (3D) image registration method suitable for pulmonary atlas construction based on CT datasets. The method has been applied to a population of normative lungs in multiple experiments and, in each instance, has resulted in significant reductions in registration errors. This study is a continuation to our previous work by presenting a method for synthesizing a computerized human lung atlas from previously registered and matched 3D pulmonary CT datasets from a population of normative subjects. Our method consists of defining the origin of the atlas coordinate system; defining the nomenclature and labels for anatomical structures within the atlas system; computing the average transformation based on the displacement fields to register individual subject to the common template subject; constructing the atlas by deforming the template with the average transformation; and calculating shape variations within the population. RESULTS: The feasibility of pulmonary atlas construction was evaluated using CT datasets from 20 normal volunteers. Substantial reductions in shape variability were demonstrated. In addition, the constructed atlas depends only slightly on a specific subject being selected as the template. These results indicate the framework is a robust and valid method for pulmonary atlas construction based on CT scans. The atlas consists of a grayscale CT dataset of the template, a labeled mask dataset of the template (ie, lungs, lobes, and lobar fissures are labeled with different gray levels), a data set representing the population's average shape, datasets representing the population's shape variations (ie, the magnitude of standard deviation), a data structure to contain the labels and coordinates of major airway branchpoints, and the labels of the mask dataset, and a reference coordinate system for each lung. CONCLUSION: A computerized human lung atlas representing by the average shape of a population of twenty normal subjects was constructed and visualized. The atlas provides a basis for establishing regional ranges of normative values for structural and functional measures of the human lung. In the future, we plan to use the computerized human lung atlas to help detect and quantify early signs of lung pathology.


Assuntos
Imageamento Tridimensional/métodos , Pulmão/anatomia & histologia , Pulmão/diagnóstico por imagem , Modelos Anatômicos , Reconhecimento Automatizado de Padrão/métodos , Interpretação de Imagem Radiográfica Assistida por Computador/métodos , Tomografia Computadorizada por Raios X/métodos , Adulto , Algoritmos , Simulação por Computador , Humanos , Técnicas In Vitro , Pessoa de Meia-Idade , Intensificação de Imagem Radiográfica/métodos , Valores de Referência , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Estados Unidos
3.
COPD ; 9(2): 151-9, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22429093

RESUMO

UNLABELLED: The purposes of this study were: to describe chest CT findings in normal non-smoking controls and cigarette smokers with and without COPD; to compare the prevalence of CT abnormalities with severity of COPD; and to evaluate concordance between visual and quantitative chest CT (QCT) scoring. METHODS: Volumetric inspiratory and expiratory CT scans of 294 subjects, including normal non-smokers, smokers without COPD, and smokers with GOLD Stage I-IV COPD, were scored at a multi-reader workshop using a standardized worksheet. There were 58 observers (33 pulmonologists, 25 radiologists); each scan was scored by 9-11 observers. Interobserver agreement was calculated using kappa statistic. Median score of visual observations was compared with QCT measurements. RESULTS: Interobserver agreement was moderate for the presence or absence of emphysema and for the presence of panlobular emphysema; fair for the presence of centrilobular, paraseptal, and bullous emphysema subtypes and for the presence of bronchial wall thickening; and poor for gas trapping, centrilobular nodularity, mosaic attenuation, and bronchial dilation. Agreement was similar for radiologists and pulmonologists. The prevalence on CT readings of most abnormalities (e.g. emphysema, bronchial wall thickening, mosaic attenuation, expiratory gas trapping) increased significantly with greater COPD severity, while the prevalence of centrilobular nodularity decreased. Concordances between visual scoring and quantitative scoring of emphysema, gas trapping and airway wall thickening were 75%, 87% and 65%, respectively. CONCLUSIONS: Despite substantial inter-observer variation, visual assessment of chest CT scans in cigarette smokers provides information regarding lung disease severity; visual scoring may be complementary to quantitative evaluation.


Assuntos
Enfisema/diagnóstico por imagem , Pulmão/diagnóstico por imagem , Doença Pulmonar Obstrutiva Crônica/diagnóstico por imagem , Tomografia Computadorizada por Raios X/métodos , Idoso , Estudos de Casos e Controles , Educação , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Variações Dependentes do Observador , Prevalência , Projetos de Pesquisa , Fumar
4.
Med Phys ; 38(2): 915-31, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21452728

RESUMO

PURPOSE: The development of computer-aided diagnostic (CAD) methods for lung nodule detection, classification, and quantitative assessment can be facilitated through a well-characterized repository of computed tomography (CT) scans. The Lung Image Database Consortium (LIDC) and Image Database Resource Initiative (IDRI) completed such a database, establishing a publicly available reference for the medical imaging research community. Initiated by the National Cancer Institute (NCI), further advanced by the Foundation for the National Institutes of Health (FNIH), and accompanied by the Food and Drug Administration (FDA) through active participation, this public-private partnership demonstrates the success of a consortium founded on a consensus-based process. METHODS: Seven academic centers and eight medical imaging companies collaborated to identify, address, and resolve challenging organizational, technical, and clinical issues to provide a solid foundation for a robust database. The LIDC/IDRI Database contains 1018 cases, each of which includes images from a clinical thoracic CT scan and an associated XML file that records the results of a two-phase image annotation process performed by four experienced thoracic radiologists. In the initial blinded-read phase, each radiologist independently reviewed each CT scan and marked lesions belonging to one of three categories ("nodule > or =3 mm," "nodule <3 mm," and "non-nodule > or =3 mm"). In the subsequent unblinded-read phase, each radiologist independently reviewed their own marks along with the anonymized marks of the three other radiologists to render a final opinion. The goal of this process was to identify as completely as possible all lung nodules in each CT scan without requiring forced consensus. RESULTS: The Database contains 7371 lesions marked "nodule" by at least one radiologist. 2669 of these lesions were marked "nodule > or =3 mm" by at least one radiologist, of which 928 (34.7%) received such marks from all four radiologists. These 2669 lesions include nodule outlines and subjective nodule characteristic ratings. CONCLUSIONS: The LIDC/IDRI Database is expected to provide an essential medical imaging research resource to spur CAD development, validation, and dissemination in clinical practice.


Assuntos
Bases de Dados Factuais , Neoplasias Pulmonares/diagnóstico por imagem , Pulmão/diagnóstico por imagem , Tomografia Computadorizada por Raios X/métodos , Tomografia Computadorizada por Raios X/normas , Diagnóstico por Computador , Humanos , Neoplasias Pulmonares/patologia , Controle de Qualidade , Interpretação de Imagem Radiográfica Assistida por Computador , Radiografia Torácica , Padrões de Referência , Carga Tumoral
5.
Radiology ; 259(3): 875-84, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21325035

RESUMO

UNLABELLED: Quantitative imaging biomarkers could speed the development of new treatments for unmet medical needs and improve routine clinical care. However, it is not clear how the various regulatory and nonregulatory (eg, reimbursement) processes (often referred to as pathways) relate, nor is it clear which data need to be collected to support these different pathways most efficiently, given the time- and cost-intensive nature of doing so. The purpose of this article is to describe current thinking regarding these pathways emerging from diverse stakeholders interested and active in the definition, validation, and qualification of quantitative imaging biomarkers and to propose processes to facilitate the development and use of quantitative imaging biomarkers. A flexible framework is described that may be adapted for each imaging application, providing mechanisms that can be used to develop, assess, and evaluate relevant biomarkers. From this framework, processes can be mapped that would be applicable to both imaging product development and to quantitative imaging biomarker development aimed at increasing the effectiveness and availability of quantitative imaging. SUPPLEMENTAL MATERIAL: http://radiology.rsna.org/lookup/suppl/doi:10.1148/radiol.10100800/-/DC1.


Assuntos
Biomarcadores , Diagnóstico por Imagem , Difusão de Inovações , Avaliação da Tecnologia Biomédica/normas , Pesquisa Biomédica/organização & administração , Conflito de Interesses , Aprovação de Equipamentos , Europa (Continente) , Humanos , Valor Preditivo dos Testes , Estados Unidos , United States Food and Drug Administration
6.
J Magn Reson Imaging ; 32(6): 1353-69, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21105140

RESUMO

This review compares the emerging technologies and approaches in the application of magnetic resonance (MR) and computed tomography (CT) imaging for the assessment of pulmonary nodules and staging of malignant findings. Included in this review is a brief definition of pulmonary nodules and an introduction to the challenges faced. We have highlighted the current status of both MR and CT for the early detection of lung nodules. Developments are detailed in this review for the management of pulmonary nodules using advanced imaging, including: dynamic imaging studies, dual energy CT, computer aided detection and diagnosis, and imaging assisted nodule biopsy approaches which have improved lung nodule detection and diagnosis rates. Recent advancements linking in vivo imaging to corresponding histological pathology are also highlighted. In vivo imaging plays a pivotal role in the clinical staging of pulmonary nodules through TNM assessment. While CT and positron emission tomography (PET)/CT are currently the most commonly clinically employed modalities for pulmonary nodule staging, studies are presented that highlight the augmentative potential of MR.


Assuntos
Neoplasias Pulmonares/diagnóstico por imagem , Neoplasias Pulmonares/diagnóstico , Imageamento por Ressonância Magnética/métodos , Nódulo Pulmonar Solitário/diagnóstico , Tomografia Computadorizada por Raios X/métodos , Adulto , Idoso , Algoritmos , Biópsia , Diagnóstico por Computador/métodos , Feminino , Humanos , Neoplasias Pulmonares/patologia , Masculino , Pessoa de Meia-Idade , Estadiamento de Neoplasias/métodos , Radiografia Torácica/métodos , Nódulo Pulmonar Solitário/patologia , Parede Torácica/diagnóstico por imagem
7.
Med Phys ; 37(9): 4793-805, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20964199

RESUMO

PURPOSE: Small animal micro-CT imaging is being used increasingly in preclinical biomedical research to provide phenotypic descriptions of genomic models. Most of this imaging is coincident with animal death and is used to show the extent of disease as an end point. Longitudinal imaging overcomes the limitation of single time-point imaging because it enables tracking of the natural history of disease and provides qualitative and, where possible, quantitative assessments of the effects of an intervention. The pulmonary system is affected by many disease conditions, such as lung cancer, chronic obstructive pulmonary disease, asthma, and granulomatous disorders. Noninvasive imaging can accurately assess the lung phenotype within the living animal, evaluating not only global lung measures, but also regional pathology. However, imaging the lung in the living animal is complicated by rapid respiratory motion, which leads to image based artifacts. Furthermore, no standard mouse lung imaging protocols exist for longitudinal assessment, with each group needing to develop their own systematic approach. METHODS: In this article, the authors present an outline for performing longitudinal breath-hold gated micro-CT imaging for the assessment of lung nodules in a mouse model of lung cancer. The authors describe modifications to the previously published intermittent isopressure breath-hold technique including a new animal preparation and anesthesia protocol, implementation of a ring artifact reduction, variable scanner geometry, and polynomial beam hardening correction. In addition, the authors describe a multitime-point data set registration and tumor labeling and tracking strategy. RESULTS: In vivo micro-CT data sets were acquired at months 2, 3, and 4 posturethane administration in cancer mice (n = 5) and simultaneously in control mice (n = 3). 137 unique lung nodules were identified from the cancer mice while no nodules were detected in the control mice. A total of 411 nodules were segmented and labeled over the three time-points. Lung nodule metrics including RECIST, Ortho, WHO, and 3D volume were determined and extracted. A tumor incidence rate of 30.44 +/- 1.93 SEM for n = 5 was found with identification of nodules as small as 0.11 mm (RECIST) and as large as 1.66 mm (RECIST). In addition, the tumor growth and doubling rate between months 2-3 and 3-4 were calculated. Here, the growth rate was slightly higher in the second period based on the 3D volume data (0.12 +/- 0.13 to 0.13 +/- 0.17 microl) but significantly less based on the linear diameter metrics [RECIST (0.33 +/- 0.19 to 0.17 +/- 0.18 mm); Ortho (0.24 +/- 0.15 to 0.16 +/- 0.15 mm)], indicating the need to understand how each metric is obtained and how to correctly interpret change in tumor size. CONCLUSIONS: In conclusion, micro-CT imaging provides a unique platform for in vivo longitudinal assessment of pulmonary lung cancer progression and potentially tracking of therapies at very high resolutions. The ability to evaluate the same subject over time provides for a sensitive assay that can be carried out on a smaller sample size. When integrated with image processing and analysis routines as detailed in this study, the data acquired from micro-CT imaging can now provide a very powerful assessment of pulmonary disease outcomes.


Assuntos
Progressão da Doença , Neoplasias Pulmonares/diagnóstico por imagem , Microtomografia por Raio-X/métodos , Anestesia , Animais , Camundongos , Interpretação de Imagem Radiográfica Assistida por Computador , Fatores de Tempo
8.
Nat Med ; 16(10): 1120-1127, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20852622

RESUMO

Pneumonia remains the leading cause of death from infection in the US, yet fundamentally new conceptual models underlying its pathogenesis have not emerged. We show that humans and mice with bacterial pneumonia have markedly elevated amounts of cardiolipin, a rare, mitochondrial-specific phospholipid, in lung fluid and find that it potently disrupts surfactant function. Intratracheal cardiolipin administration in mice recapitulates the clinical phenotype of pneumonia, including impaired lung mechanics, modulation of cell survival and cytokine networks and lung consolidation. We have identified and characterized the activity of a unique cardiolipin transporter, the P-type ATPase transmembrane lipid pump Atp8b1, a mutant version of which is associated with severe pneumonia in humans and mice. Atp8b1 bound and internalized cardiolipin from extracellular fluid via a basic residue-enriched motif. Administration of a peptide encompassing the cardiolipin binding motif or Atp8b1 gene transfer in mice lessened bacteria-induced lung injury and improved survival. The results unveil a new paradigm whereby Atp8b1 is a cardiolipin importer whose capacity to remove cardiolipin from lung fluid is exceeded during inflammation or when Atp8b1 is defective. This discovery opens the door for new therapeutic strategies directed at modulating the abundance or molecular interactions of cardiolipin in pneumonia.


Assuntos
Adenosina Trifosfatases/fisiologia , Cardiolipinas/fisiologia , Lesão Pulmonar/etiologia , Pneumonia Bacteriana/complicações , Animais , Sítios de Ligação , Sobrevivência Celular , Células Cultivadas , Modelos Animais de Doenças , Humanos , Pulmão/metabolismo , Pulmão/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Proteínas de Transferência de Fosfolipídeos , Pneumonia Bacteriana/metabolismo , Surfactantes Pulmonares/metabolismo
9.
N Engl J Med ; 363(13): 1233-44, 2010 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-20860505

RESUMO

BACKGROUND: Endobronchial valves that allow air to escape from a pulmonary lobe but not enter it can induce a reduction in lobar volume that may thereby improve lung function and exercise tolerance in patients with pulmonary hyperinflation related to advanced emphysema. METHODS: We compared the safety and efficacy of endobronchial-valve therapy in patients with heterogeneous emphysema versus standard medical care. Efficacy end points were percent changes in the forced expiratory volume in 1 second (FEV1) and the 6-minute walk test on intention-to-treat analysis. We assessed safety on the basis of the rate of a composite of six major complications. RESULTS: Of 321 enrolled patients, 220 were randomly assigned to receive endobronchial valves (EBV group) and 101 to receive standard medical care (control group). At 6 months, there was an increase of 4.3% in the FEV1 in the EBV group (an increase of 1.0 percentage point in the percent of the predicted value), as compared with a decrease of 2.5% in the control group (a decrease of 0.9 percentage point in the percent of the predicted value). Thus, there was a mean between-group difference of 6.8% in the FEV1 (P=0.005). Roughly similar between-group differences were observed for the 6-minute walk test. At 12 months, the rate of the complications composite was 10.3% in the EBV group versus 4.6% in the control group (P=0.17). At 90 days, in the EBV group, as compared with the control group, there were increased rates of exacerbation of chronic obstructive pulmonary disease (COPD) requiring hospitalization (7.9% vs. 1.1%, P=0.03) and hemoptysis (6.1% vs. 0%, P=0.01). The rate of pneumonia in the target lobe in the EBV group was 4.2% at 12 months. Greater radiographic evidence of emphysema heterogeneity and fissure completeness was associated with an enhanced response to treatment. CONCLUSIONS: Endobronchial-valve treatment for advanced heterogeneous emphysema induced modest improvements in lung function, exercise tolerance, and symptoms at the cost of more frequent exacerbations of COPD, pneumonia, and hemoptysis after implantation. (Funded by Pulmonx; ClinicalTrials.gov number, NCT00129584.)


Assuntos
Próteses e Implantes , Enfisema Pulmonar/terapia , Adulto , Idoso , Antibioticoprofilaxia , Broncodilatadores/uso terapêutico , Broncoscopia , Tolerância ao Exercício , Volume Expiratório Forçado , Humanos , Pessoa de Meia-Idade , Pneumonectomia/métodos , Modelos de Riscos Proporcionais , Doença Pulmonar Obstrutiva Crônica/complicações , Enfisema Pulmonar/complicações , Enfisema Pulmonar/tratamento farmacológico , Enfisema Pulmonar/mortalidade , Fenômenos Fisiológicos Respiratórios
10.
J Appl Physiol (1985) ; 109(6): 1960-8, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20671036

RESUMO

Within pulmonary research, the development of mouse models has provided insight into disease development, progression, and treatment. Structural phenotypes of the lung in healthy inbred mouse strains are necessary for comparison to disease models. To date, progress in the assessment of lung function in these small animals using whole lung function tests has been made. However, assessment of in vivo lung structure of inbred mouse strains has yet to be well defined. Therefore, the link between the structure and function phenotypes is still unclear. With advancements in small animal imaging it is now possible to investigate lung structures such as the central and peripheral airways, whole lung, and lobar volumes of mice in vivo, through the use of micro-CT imaging. In this study, we performed in vivo micro-CT imaging of the C57BL/6, A/J, and BALB/c mouse strains using the intermittent iso-pressure breath hold (IIBH) technique. The resulting high-resolution images were used to extract lung structure phenotypes. The three-dimensional lobar structures and airways were defined and a meaningful mouse airway nomenclature was developed. In addition, using these techniques we have uncovered significant differences in the airway structures between inbred mouse strains in vivo.


Assuntos
Pulmão/diagnóstico por imagem , Microtomografia por Raio-X , Animais , Imageamento Tridimensional , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Fenótipo , Interpretação de Imagem Radiográfica Assistida por Computador , Respiração
11.
Am J Respir Crit Care Med ; 182(10): 1251-61, 2010 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-20622026

RESUMO

RATIONALE: Although airway abnormalities are common in patients with cystic fibrosis (CF), it is unknown whether they are all secondary to postnatal infection and inflammation, which characterize the disease. OBJECTIVES: To learn whether loss of the cystic fibrosis transmembrane conductance regulator (CFTR) might affect major airways early in life, before the onset of inflammation and infection. METHODS: We studied newborn CFTR⁻(/)⁻ pig trachea, using computed tomography (CT) scans, pathology, and morphometry. We retrospectively analyzed trachea CT scans in young children with CF and also previously published data of infants with CF. MEASUREMENTS AND MAIN RESULTS: We discovered three abnormalities in the porcine CF trachea. First, the trachea and mainstem bronchi had a uniformly small caliber and cross-sections of trachea were less circular than in controls. Second, trachealis smooth muscle had an altered bundle orientation and increased transcripts in a smooth muscle gene set. Third, submucosal gland units occurred with similar frequency in the mucosa of CF and control airways, but CF submucosal glands were hypoplastic and had global reductions in tissue-specific transcripts. To learn whether any of these changes occurred in young patients with CF, we examined CT scans from children 2 years of age and younger, and found that CF tracheas were less circular in cross-section, but lacked differences in lumen area. However, analysis of previously published morphometric data showed reduced tracheal lumen area in neonates with CF. CONCLUSIONS: Our findings in newborn CF pigs and young patients with CF suggest that airway changes begin during fetal life and may contribute to CF pathogenesis and clinical disease during postnatal life.


Assuntos
Fibrose Cística/fisiopatologia , Traqueia/crescimento & desenvolvimento , Animais , Animais Recém-Nascidos , Pré-Escolar , Fibrose Cística/etiologia , Fibrose Cística/patologia , Regulador de Condutância Transmembrana em Fibrose Cística/fisiologia , Humanos , Lactente , Análise em Microsséries , Músculo Liso/patologia , Músculo Liso/fisiopatologia , Mucosa Respiratória/patologia , Mucosa Respiratória/fisiopatologia , Estudos Retrospectivos , Suínos , Tomografia Computadorizada por Raios X , Traqueia/patologia , Traqueia/fisiopatologia
12.
Ann Biomed Eng ; 38(12): 3581-91, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20571856

RESUMO

Lung cancer nodules, particularly adenocarcinoma, contain a complex intermixing of cellular tissue types: incorporating cancer cells, fibroblastic stromal tissue, and inactive fibrosis. Quantitative proportions and distributions of the various tissue types may be insightful for understanding lung cancer growth, classification, and prognostic factors. However, current methods of histological assessment are qualitative and provide limited opportunity to systematically evaluate the relevance of lung nodule cellular heterogeneity. In this study we present both a manual and an automatic method for segmentation of tissue types in histological sections of resected human lung cancer nodules. A specialized staining approach incorporating immunohistochemistry with a modified Masson's Trichrome counterstain was employed to maximize color contrast in the tissue samples for automated segmentation. The developed, clustering-based, fully automated segmentation approach segments complete lung nodule cross-sectional histology slides in less than 1 min, compared to manual segmentation which requires multiple hours to complete. We found the accuracy of the automated approach to be comparable to that of the manual segmentation with the added advantages of improved time efficiency, removal of susceptibility to human error, and 100% repeatability.


Assuntos
Técnicas Histológicas/métodos , Processamento de Imagem Assistida por Computador/métodos , Neoplasias Pulmonares/patologia , Algoritmos , Engenharia Biomédica , Diagnóstico por Computador , Humanos , Imuno-Histoquímica/métodos , Neoplasias Pulmonares/classificação , Coloração e Rotulagem/métodos
13.
Proc Natl Acad Sci U S A ; 107(16): 7485-90, 2010 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-20368443

RESUMO

Recent evidence suggests that endothelial dysfunction and pathology of pulmonary vascular responses may serve as a precursor to smoking-associated emphysema. Although it is known that emphysematous destruction leads to vasculature changes, less is known about early regional vascular dysfunction which may contribute to and precede emphysematous changes. We sought to test the hypothesis, via multidetector row CT (MDCT) perfusion imaging, that smokers showing early signs of emphysema susceptibility have a greater heterogeneity in regional perfusion parameters than emphysema-free smokers and persons who had never smoked (NS). Assuming that all smokers have a consistent inflammatory response, increased perfusion heterogeneity in emphysema-susceptible smokers would be consistent with the notion that these subjects may have the inability to block hypoxic vasoconstriction in patchy, small regions of inflammation. Dynamic ECG-gated MDCT perfusion scans with a central bolus injection of contrast were acquired in 17 NS, 12 smokers with normal CT imaging studies (SNI), and 12 smokers with subtle CT findings of centrilobular emphysema (SCE). All subjects had normal spirometry. Quantitative image analysis determined regional perfusion parameters, pulmonary blood flow (PBF), and mean transit time (MTT). Mean and coefficient of variation were calculated, and statistical differences were assessed with one-way ANOVA. MDCT-based MTT and PBF measurements demonstrate globally increased heterogeneity in SCE subjects compared with NS and SNI subjects but demonstrate similarity between NS and SNI subjects. These findings demonstrate a functional lung-imaging measure that provides a more mechanistically oriented phenotype that differentiates smokers with and without evidence of emphysema susceptibility.


Assuntos
Enfisema/diagnóstico por imagem , Pulmão/patologia , Enfisema Pulmonar/diagnóstico por imagem , Fumar/efeitos adversos , Adulto , Estudos de Coortes , Enfisema/etiologia , Enfisema/patologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Perfusão , Fenótipo , Enfisema Pulmonar/etiologia , Enfisema Pulmonar/patologia , Interpretação de Imagem Radiográfica Assistida por Computador , Fluxo Sanguíneo Regional , Tomografia Computadorizada por Raios X/métodos
14.
Acad Radiol ; 17(2): 169-80, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19926496

RESUMO

RATIONALE AND OBJECTIVES: Multimodal imaging techniques for capturing normal and diseased human anatomy and physiology are being developed to benefit patient clinical care, research, and education. In the past, the incorporation of histopathology into these multimodal datasets has been complicated by the large differences in image quality, content, and spatial association. MATERIALS AND METHODS: We have developed a novel system, the large-scale image microtome array (LIMA), to bridge the gap between nonstructurally destructive and destructive imaging such that reliable registration between radiological data and histopathology can be achieved. Registration algorithms have been designed to align the multimodal datasets, which include computed tomography, computed micro-tomography, LIMA, and histopathology data to a common coordinate system. RESULTS: The resulting volumetric dataset provides an abundance of valuable information relating to the tissue sample including density, anatomical structure, color, texture, and cellular information in three dimensions. An image processing pipeline has been established to register all the multimodal data to a common coordinate system. CONCLUSION: In this study, we have chosen to use human lung cancer nodules as an example; however, the flexibility of the image acquisition and subsequent processing algorithms makes it applicable to any soft organ tissue. A novel process model has been established to generate cross registered multimodal datasets for the investigation of human lung cancer nodule content and associated image-based representation.


Assuntos
Interpretação de Imagem Assistida por Computador/métodos , Nódulo Pulmonar Solitário/diagnóstico por imagem , Nódulo Pulmonar Solitário/patologia , Técnica de Subtração , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Radiografia , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Estatística como Assunto
15.
Transl Oncol ; 2(4): 198-210, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19956379

RESUMO

RATIONALE: Early detection of tumor response to therapy is a key goal. Finding measurement algorithms capable of early detection of tumor response could individualize therapy treatment as well as reduce the cost of bringing new drugs to market. On an individual basis, the urgency arises from the desire to prevent continued treatment of the patient with a high-cost and/or high-risk regimen with no demonstrated individual benefit and rapidly switch the patient to an alternative efficacious therapy for that patient. In the context of bringing new drugs to market, such algorithms could demonstrate efficacy in much smaller populations, which would allow phase 3 trials to achieve statistically significant decisions with fewer subjects in shorter trials. MATERIALS AND METHODS: This consensus-based article describes multiple, image modality-independent means to assess the relative performance of algorithms for measuring tumor change in response to therapy. In this setting, we describe specifically the example of measurement of tumor volume change from anatomic imaging as well as provide an overview of other promising generic analytic methods that can be used to assess change in heterogeneous tumors. To support assessment of the relative performance of algorithms for measuring small tumor change, data sources of truth are required. RESULTS: Very short interval clinical imaging examinations and phantom scans provide known truth for comparative evaluation of algorithms. CONCLUSIONS: For a given category of measurement methods, the algorithm that has the smallest measurement noise and least bias on average will perform best in early detection of true tumor change.

16.
Transl Oncol ; 2(4): 216-22, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19956381

RESUMO

RATIONALE AND OBJECTIVES: This article describes issues and methods that are specific to the measurement of change in tumor volume as measured from computed tomographic (CT) images and how these would relate to the establishment of CT tumor volumetrics as a biomarker of patient response to therapy. The primary focus is on the measurement of lung tumors, but the approach should be generalizable to other anatomic regions. MATERIALS AND METHODS: The first issues addressed are the various sources of bias and variance in the measurement of tumor volumes, which are discussed in the context of measurement variation and its impact on the early detection of response to therapy. RESULTS AND RESOURCES: Research that seeks to identify the magnitude of some of these sources of error is ongoing, and several of these efforts are described herein. In addition, several resources for these investigations are being made available through the National Institutes of Health-funded Reference Image Database to Evaluate Response to therapy in cancer project, and these are described as well. Other measures derived from CT image data that might be predictive of patient response are described briefly, as well as the additional issues that each of these metrics may encounter in real-life applications. CONCLUSIONS: The article concludes with a brief discussion of moving from the assessment of measurement variation to the steps necessary to establish the efficacy of a metric as a biomarker for response.

17.
Transl Oncol ; 2(4): 223-30, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19956382

RESUMO

We describe methods and issues that are relevant to the measurement of change in tumor uptake of (18)F-fluorodeoxyglucose (FDG) or other radiotracers, as measured from positron emission tomography/computed tomography (PET/CT) images, and how this would relate to the establishment of PET/CT tumor imaging as a biomarker of patient response to therapy. The primary focus is on the uptake of FDG by lung tumors, but the approach can be applied to diseases other than lung cancer and to tracers other than FDG. The first issue addressed is the sources of bias and variance in the measurement of tumor uptake of FDG, and where there are still gaps in our knowledge. These are discussed in the context of measurement variation and how these would relate to the early detection of response to therapy. Some of the research efforts currently underway to identify the magnitude of some of these sources of error are described. In addition, we describe resources for these investigations that are being made available through the Reference Image Database for the Evaluation of Response project. Measures derived from PET image data that might be predictive of patient response as well as the additional issues that each of these metrics may encounter are described briefly. The relationship between individual patient response to therapy and utility for multicenter trials is discussed. We conclude with a discussion of moving from assessing measurement variation to the steps necessary to establish the efficacy of PET/CT imaging as a biomarker for response.

19.
Am J Respir Crit Care Med ; 179(9): 791-8, 2009 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-19179484

RESUMO

RATIONALE: Biologic lung volume reduction (BioLVR) is a new endobronchial treatment for advanced emphysema that reduces lung volume through tissue remodeling. OBJECTIVES: Assess the safety and therapeutic dose of BioLVR hydrogel in upper lobe predominant emphysema. METHODS: Open-labeled, multicenter phase 2 dose-ranging studies were performed with BioLVR hydrogel administered to eight subsegmental sites (four in each upper lobe) involving: (1) low-dose treatment (n = 28) with 10 ml per site (LD); and (2) high-dose treatment (n = 22) with 20 ml per site (HD). Safety was assessed by the incidence of serious medical complications. Efficacy was assessed by change from baseline in pulmonary function tests, dyspnea score, 6-minute walk distance, and health-related quality of life. MEASUREMENTS AND MAIN RESULTS: After treatment there were no deaths and four serious treatment-related complications. A reduction in residual volume to TLC ratio at 12 weeks (primary efficacy outcome) was achieved with both LD (-6.4 +/- 9.3%; P = 0.002) and HD (-5.5 +/- 9.4%; P = 0.028) treatments. Improvements in pulmonary function in HD (6 mo: DeltaFEV(1) = +15.6%; P = 0.002; DeltaFVC = +9.1%; P = 0.034) were greater than in LD patients (6 mo: DeltaFEV(1) = +6.7%; P = 0.021; DeltaFVC = +5.1%; P = 0.139). LD- and HD-treated groups both demonstrated improved symptom scores and health-related quality of life. CONCLUSIONS: BioLVR improves physiology and functional outcomes up to 6 months with an acceptable safety profile in upper lobe predominant emphysema. Overall improvement was greater and responses more durable with 20 ml per site than 10 ml per site dosing. Clinical trial registered with www.clinicaltrials.gov (NCT 00435253 and NCT 00515164).


Assuntos
Hidrogéis/administração & dosagem , Pulmão/efeitos dos fármacos , Enfisema Pulmonar/terapia , Idoso , Broncoscopia , Dispneia/terapia , Fadiga/etiologia , Feminino , Febre/etiologia , Humanos , Hidrogéis/efeitos adversos , Leucocitose/etiologia , Pulmão/diagnóstico por imagem , Masculino , Pessoa de Meia-Idade , Doença Pulmonar Obstrutiva Crônica/terapia , Enfisema Pulmonar/diagnóstico por imagem , Qualidade de Vida , Radiografia , Testes de Função Respiratória
20.
Int J Biomed Imaging ; 2009: 636240, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-20052391

RESUMO

This paper describes an algorithm for extracting pulmonary vascular trees (arteries plus veins) from three-dimensional (3D) thoracic computed tomographic (CT) images. The algorithm integrates tube enhancement filter and traversal approaches which are based on eigenvalues and eigenvectors of a Hessian matrix to extract thin peripheral segments as well as thick vessels close to the lung hilum. The resultant algorithm was applied to a simulation data set and 44 scans from 22 human subjects imaged via multidetector-row CT (MDCT) during breath holds at 85% and 20% of their vital capacity. A quantitative validation was performed with more than 1000 manually identified points selected from inside the vessel segments to assess true positives (TPs) and 1000 points randomly placed outside of the vessels to evaluate false positives (FPs) in each case. On average, for both the high and low volume lung images, 99% of the points was properly marked as vessel and 1% of the points were assessed as FPs. Our hybrid segmentation algorithm provides a highly reliable method of segmenting the combined pulmonary venous and arterial trees which in turn will serve as a critical starting point for further quantitative analysis tasks and aid in our overall goal of establishing a normative atlas of the human lung.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...