Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ecol Appl ; 29(4): e01879, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30838713

RESUMO

Plantation forestry, in which trees are grown as a crop, must maintain wood production over repeated harvest cycles (rotations) to meet global wood demands on a limited land area. We analyze 33 yr of Landsat observations across the world's most productive forestry system, Eucalyptus plantations in southeastern Brazil, to assess long-term regional trends in wood production. We apply a simple algorithm to time series of the vegetation index NIRv in thousands of Eucalyptus stands to detect the starts and ends of rotations. We then estimate wood production in each identified stand and rotation, based on a statistical relationship between NIRv trajectories and inventory data from three plantation companies. We also compare Eucalyptus NIRv with that of surrounding native vegetation to assess the relative influence of management and environment on plantation productivity trends. Across more than 3,500 stands with three complete rotations between 1984 and 2016, modeled wood volume decreased significantly between the first and second rotation, but recovered at least partially in the third; mean wood volumes for the three rotations were 262, 228, and 247 m3 /ha. This nonlinear trend reflects intensifying plantation management, as rotation length decreased by an average of 15% (decreasing wood volume per rotation) and NIRv proxies of tree growth rates increased (increasing volume) between the first and third rotation. However, NIRv also increased significantly over time in unmanaged vegetation around the plantations, suggesting that environmental trends affecting all vegetation also contribute to sustaining wood production. Management inputs will likely continue to be important for maintaining wood production in future harvests.


Assuntos
Eucalyptus , Brasil , Agricultura Florestal , Árvores , Madeira
2.
New Phytol ; 213(1): 181-192, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27477387

RESUMO

Afforestation significantly affects soil chemistry and biota, but its effects on the potentially growth-limiting nutrient phosphorus (P) had not to our knowledge been analyzed globally. We conducted a comprehensive meta-analysis of 220 independent sampling sites from 108 articles to evaluate global patterns and controls of soil P change following afforestation. Overall, total P concentration decreased by 11% and total P stock by 12% in the top 20 cm of mineral soil following afforestation, with no change in available P. Time since afforestation had no consistent effect on total P, while available P tended to increase with time. Prior land cover was the most influential factor for soil P change after afforestation, with available P increasing on native vegetation but decreasing on cropland. Afforestation increased available P by 22% without decreasing total P on formerly 'degraded' land, but depleted total P by 15% at nondegraded sites. Climate also influenced soil P response to afforestation, with larger P loss in the tropics. Afforestation did not appear to directly induce P limitation, as available P only decreased on cropland. However, substantial declines in total P may drive tropical plantations toward greater P limitation as the capacity to replenish available P decreases.


Assuntos
Conservação dos Recursos Naturais , Fósforo/análise , Solo/química , Clima , Geografia , Temperatura
3.
PLoS Genet ; 11(5): e1005221, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25978409

RESUMO

Bone morphogenetic proteins (BMPs) belong to the transforming growth factor ß (TGFß) superfamily of secreted molecules. BMPs play essential roles in multiple developmental and homeostatic processes in metazoans. Malfunction of the BMP pathway can cause a variety of diseases in humans, including cancer, skeletal disorders and cardiovascular diseases. Identification of factors that ensure proper spatiotemporal control of BMP signaling is critical for understanding how this pathway is regulated. We have used a unique and sensitive genetic screen to identify the plasma membrane-localized tetraspanin TSP-21 as a key new factor in the C. elegans BMP-like "Sma/Mab" signaling pathway that controls body size and postembryonic M lineage development. We showed that TSP-21 acts in the signal-receiving cells and genetically functions at the ligand-receptor level. We further showed that TSP-21 can associate with itself and with two additional tetraspanins, TSP-12 and TSP-14, which also promote Sma/Mab signaling. TSP-12 and TSP-14 can also associate with SMA-6, the type I receptor of the Sma/Mab pathway. Finally, we found that glycosphingolipids, major components of the tetraspanin-enriched microdomains, are required for Sma/Mab signaling. Our findings suggest that the tetraspanin-enriched membrane microdomains are important for proper BMP signaling. As tetraspanins have emerged as diagnostic and prognostic markers for tumor progression, and TSP-21, TSP-12 and TSP-14 are all conserved in humans, we speculate that abnormal BMP signaling due to altered expression or function of certain tetraspanins may be a contributing factor to cancer development.


Assuntos
Proteínas Morfogenéticas Ósseas/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Glicoesfingolipídeos/farmacologia , Transdução de Sinais , Tetraspaninas/metabolismo , Sequência de Aminoácidos , Animais , Proteínas Morfogenéticas Ósseas/genética , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/antagonistas & inibidores , Proteínas de Caenorhabditis elegans/genética , Regulação da Expressão Gênica , Genes Reporter , Marcadores Genéticos , Dados de Sequência Molecular , Mutação , Fenótipo , Sensibilidade e Especificidade , Análise de Sequência de DNA , Tetraspaninas/genética , Fatores de Transcrição/antagonistas & inibidores , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Fator de Crescimento Transformador beta/genética , Fator de Crescimento Transformador beta/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...