Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Chem Phys ; 145(9): 094106, 2016 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-27608988

RESUMO

We present a coupled wave semiclassical theory to describe plasmonic enhancement effects in surface-enhanced femtosecond stimulated Raman scattering (SE-FSRS). A key result is that the plasmon enhanced fields which drive the vibrational equation of motion for each normal mode results in dispersive lineshapes in the SE-FSRS spectrum. This result, which reproduces experimental lineshapes, demonstrates that plasmon-enhanced stimulated Raman methods provide unique sensitivity to a plasmonic response. Our derived SE-FSRS theory shows a plasmonic enhancement of |gpu|(2)ImχR(ω)gst (2)/ImχR(ω), where |gpu|(2) is the absolute square of the plasmonic enhancement from the Raman pump, χR(ω) is the Raman susceptibility, and gst is the plasmonic enhancement of the Stokes field in SE-FSRS. We conclude with a discussion on potential future experimental and theoretical directions for the field of plasmonically enhanced coherent Raman scattering.

3.
J Chem Theory Comput ; 10(6): 2355-62, 2014 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-26580755

RESUMO

The accurate description of the thermodynamic and dynamical properties of liquid water from first-principles is a very important challenge to the theoretical community. This represents not only a critical test of the predictive capabilities of first-principles methods, but it will also shed light into the microscopic properties of such an important substance. Density Functional Theory, the main workhorse in the field of first-principles methods, has been so far unable to properly describe water and its unusual properties in the liquid state. With the recent introduction of exact exchange and an improved description of dispersion interaction, the possibility of an accurate description of the liquid is finally within reach. Unfortunately, there is still no way to systematically improve exchange-correlation functionals, and the number of available functionals is very large. In this article we use highly accurate quantum Monte Carlo calculations to benchmark a selection of exchange-correlation functionals typically used in Density Functional Theory simulations of bulk water. This allows us to test the predictive capabilities of these functionals in water, giving us a way to choose optimal functionals for first-principles simulations. We compare and contrast the importance of different features of functionals, including the hybrid component, the vdW component, and their importance within different aspects of the PES. In addition, in order to correct the inaccuracies in the description of short-range interactions in the liquid, we test a recently introduced scheme that combines Density Functional Theory with Coupled Cluster calculations through a Many-Body expansion of the energy.

4.
Phys Rev Lett ; 110(6): 065702, 2013 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-23432276

RESUMO

Using first-principles molecular dynamics, we study the influence of nuclear quantum effects (NQEs) and nonlocal exchange-correlation density functionals (DFs) near molecular dissociation in liquid hydrogen. NQEs strongly influence intramolecular properties, such as bond stability, and are thus an essential part of the dissociation process. Moreover, by including DFs that account for either the self-interaction error or dispersion interactions, we find a much better description of molecular dissociation and metallization than previous studies based on classical protons and/or local or semilocal DFs. We obtain excellent agreement with experimentally measured optical properties along Hugoniot curves for precompressed states, and while we still find a first-order liquid-liquid transition at low temperatures, transition pressures are increased by more than 100 GPa.

5.
Phys Chem Chem Phys ; 15(15): 5415-23, 2013 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-23429382

RESUMO

We discuss how the poor metals Al, Ga, In, Sn, Tl, Pb, and Bi can be used for plasmonics in the near to far ultraviolet (UV) range, similar to the noble metals Ag and Au in the visible (Vis) range. We first discuss the empirical dielectric functions of the poor metals, contrasting them with Ag and Au, and also fitting them to a Drude and multiple Lorentz oscillator form. Using Mie theory, we then compare the optical responses of spherical poor metal nanoparticles to noble metal ones. Finally, nanoparticle dimers are studied using a vectorial finite element method. We show how the poor metals exhibit large electric field enhancements in the UV, comparable to Au in the Vis, which makes them particularly attractive for sensing applications, such as surface enhanced Raman spectroscopy.

6.
Phys Rev Lett ; 106(16): 165302, 2011 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-21599379

RESUMO

Ab initio random structure searching using density functional theory is used to determine the ground-state structures of atomic metallic hydrogen from 500 GPa to 5 TPa. Including proton zero-point motion within the harmonic approximation, we estimate that molecular hydrogen dissociates into a monatomic body-centered tetragonal structure near 500 GPa (r(s)=1.23) that remains stable to 1 TPa (r(s)=1.11). At higher pressures, hydrogen stabilizes in an …ABCABC… planar structure that is similar to the ground state of lithium, but with a different stacking sequence. With increasing pressure, this structure compresses to the face-centered cubic lattice near 3.5 TPa (r(s)=0.92).

7.
J Am Chem Soc ; 132(31): 10903-10, 2010 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-20681724

RESUMO

Understanding the detailed relationship between nanoparticle structure and activity remains a significant challenge for the field of surface-enhanced Raman spectroscopy. To this end, the structural and optical properties of individual plasmonic nanoantennas comprised of Au nanoparticle assemblies that are coated with organic reporter molecules and encapsulated by a SiO(2) shell have been determined using correlated transmission electron microscopy (TEM), dark-field Rayleigh scattering microscopy, surface-enhanced Raman scattering (SERS) microscopy, and finite element method (FEM) calculations. The distribution of SERS enhancement factors (EFs) for a structurally and optically diverse set of nanoantennas is remarkably narrow. For a collection of 30 individual nanoantennas ranging from dimers to heptamers, the EFs vary by less than 2 orders of magnitude. Furthermore, the EFs for the hot-spot-containing nanoparticles are uncorrelated to aggregation state and localized surface plasmon resonance (LSPR) wavelength but are crucially dependent on the size of the interparticle gap. This study demonstrates that the creation of hot spots, where two particles are in subnanometer proximity or have coalesced to form crevices, is paramount to achieving maximum SERS enhancements.


Assuntos
Ouro/química , Nanopartículas Metálicas/química , Dimerização , Dióxido de Silício/química , Análise Espectral Raman
8.
Nano Lett ; 10(9): 3473-81, 2010 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-20715807

RESUMO

We study the optical spectra and electromagnetic field enhancements around cylindrical and triangular Ag nanowire dimers, allowing for a spatially nonlocal dielectric function that partially accounts for quantum mechanical effects. For the triangular structures, we pay particular attention to how these properties depend on the sharpness of the nanowire's tips. We demonstrate that significant differences exist from classical electrodynamics that employs a more common, spatially local dielectric function. These differences are shown to arise from the optical excitation of volume plasmons inside of the structures, analogous to one-particle quantum mechanical states, which lead to complex and striking patterns of material polarization. These results are important for further understanding the optical properties of structures at the nanoscale and have implications for numerous physical processes, such as surface-enhanced Raman scattering.

9.
Proc Natl Acad Sci U S A ; 107(33): 14530-4, 2010 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-20671201

RESUMO

The size-dependence of surface plasmon resonances (SPRs) is poorly understood in the small particle limit due to complex physical/chemical effects and uncertainties in experimental samples. In this article, we report an approach for synthesizing an ideal class of colloidal Ag nanoparticles with highly uniform morphologies and narrow size distributions. Optical measurements and theoretical analyses for particle diameters in the d approximately 2-20 nm range are presented. The SPR absorption band exhibits an exceptional behavior: As size decreases from d approximately 20 nm it blue-shifts but then turns over near d approximately 12 nm and strongly red-shifts. A multilayer Mie theory model agrees well with the observations, indicating that lowered electron conductivity in the outermost atomic layer, due to chemical interactions, is the cause of the red-shift. We corroborate this picture by experimentally demonstrating precise chemical control of the SPR peak positions via ligand exchange.


Assuntos
Nanopartículas Metálicas/química , Nanotecnologia/métodos , Prata/química , Ressonância de Plasmônio de Superfície/métodos , Algoritmos , Aminas/química , Nanopartículas Metálicas/ultraestrutura , Microscopia Eletrônica de Transmissão , Modelos Teóricos , Nanotecnologia/instrumentação , Tamanho da Partícula , Nitrato de Prata/química , Espectrofotometria/métodos
10.
Phys Rev Lett ; 103(9): 097403, 2009 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-19792829

RESUMO

We present an implementation of Maxwell's equations that incorporates the spatially nonlocal response of materials, an effect necessary to describe the optical properties of structures with features less than 10 nm. For the first time it is possible to investigate the nonlocal optical response of structures without spherical or planar shape, and outside of the electrostatic limit. As an illustration, we calculate the optical properties of Au nanowires and show that nonlocal effects are particularly important in structures with apex features, even for arbitrarily large sizes.

11.
Anal Bioanal Chem ; 394(7): 1819-25, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19305981

RESUMO

Finite element method calculations were carried out to determine extinction spectra and the electromagnetic (EM) contributions to surface-enhanced Raman spectroscopy (SERS) for 90-nm Au nanoparticle dimers modeled after experimental nanotags. The calculations revealed that the EM properties depend significantly on the junction region, specifically the distance between the nanoparticles for spacings of less than 1 nm. For extinction spectra, spacings below 1 nm lead to maxima that are strongly red-shifted from the 600-nm plasmon maximum associated with an isolated nanoparticle. This result agrees qualitatively well with experimental transmission electron microscopy images and localized surface plasmon resonance spectra that are also presented. The calculations further revealed that spacings below 0.5 nm, and especially a slight fusing of the nanoparticles to give tiny crevices, leads to EM enhancements of 10(10) or greater. Assuming a uniform coating of SERS molecules around both nanoparticles, we determined that regardless of the separation, the highest EM fields always dominate the SERS signal. In addition, we determined that for small separations less than 3% of the molecules always contribute to greater than 90% of the signal.


Assuntos
Análise de Elementos Finitos , Ouro/química , Nanopartículas Metálicas/química , Análise Espectral Raman/métodos , Dimerização , Fenômenos Eletromagnéticos , Teste de Materiais , Microscopia Eletrônica de Transmissão , Nanotecnologia , Tamanho da Partícula , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Ressonância de Plasmônio de Superfície , Propriedades de Superfície
12.
ACS Nano ; 3(3): 615-20, 2009 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-19243190

RESUMO

Near-field scanning optical microscopy images of solid wall, circular, and elliptical microscale corrals show standing wave patterns confined inside the structures with a wavelength close to that of the incident light. The patterns inside the corrals can be tuned by changing the size and material of the walls, the wavelength of incident light, and polarization direction for elliptical corrals. Finite-difference time-domain calculations of the corral structures agree with the experimental observations and reveal that the electric and magnetic field intensities are out of phase inside the corral. A theoretical modal analysis indicates that the fields inside the corrals can be attributed to p- and s-polarized waveguide modes, and that the superposition of the propagating and evanescent modes can explain the phase differences between the fields. These experimental and theoretical results demonstrate that electromagnetic fields on a dielectric surface can be controlled in a predictable manner.

13.
Acc Chem Res ; 41(12): 1710-20, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18712883

RESUMO

This Account provides an overview of the methods that are currently being used to study the electromagnetics of silver and gold nanoparticles, with an emphasis on the determination of extinction and surface-enhanced Raman scattering (SERS) spectra. These methods have proven to be immensely useful in recent years for interpreting a wide range of nanoscience experiments and providing the capability to describe optical properties of particles up to several hundred nanometers in dimension, including arbitrary particle structures and complex dielectric environments (adsorbed layers of molecules, nearby metal films, and other particles). While some of the methods date back to Mie's celebrated work a century ago, others are still at the forefront of algorithm development in computational electromagnetics. This Account gives a qualitative description of the physical and mathematical basis behind the most commonly used methods, including both analytical and numerical methods, as well as representative results of applications that are relevant to current experiments. The analytical methods that we discuss are either derived from Mie theory for spheres or from the quasistatic (Gans) model as applied to spheres and spheroids. In this discussion, we describe the use of Mie theory to determine electromagnetic contributions to SERS enhancements that include for retarded dipole emission effects, and the use of the quasistatic approximation for spheroidal particles interacting with dye adsorbate layers. The numerical methods include the discrete dipole approximation (DDA), the finite difference time domain (FDTD) method, and the finite element method (FEM) based on Whitney forms. We discuss applications such as using DDA to describe the interaction of two gold disks to define electromagnetic hot spots, FDTD for light interacting with metal wires that go from particle-like plasmonic response to the film-like transmission as wire dimension is varied, and FEM studies of electromagnetic fields near cubic particles.


Assuntos
Ouro/química , Nanopartículas Metálicas/química , Prata/química , Algoritmos , Fenômenos Eletromagnéticos , Análise Espectral Raman
14.
Langmuir ; 23(3): 1414-8, 2007 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-17241067

RESUMO

In this paper, we describe a new procedure to phase transfer large gold nanoparticles (diameters > 45 nm) from aqueous solution to organic solvents. This is accomplished using a covalent amide coupling reaction that incorporates dicyclohexylamine (DCHA) headgroups on the surface of mercaptoacetic acid (MAA) functionalized gold nanoparticles. Gold nanoparticles are first synthesized in aqueous solution by the citrate-reduction method, and nanoparticle size is controlled by the molar ratio of the reducing agent (sodium citrate) and the gold precursor (KAuCl4). MAA is then adsorbed to the surface of the gold nanoparticles followed by an amide-coupling reaction to covalently attach DCHA to the surface-immobilized MAA. The bulky dicyclohexyl groups entropically stabilize gold nanoparticles in organic solvents. This procedure was used to reliably transfer gold nanoparticles with diameters between 45 and 100 nm from aqueous solution to organic solvents such as dimethyl sulfoxide and chloroform.

15.
Opt Express ; 15(26): 18119-29, 2007 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-19551110

RESUMO

Surface plasmon polaritons (SPPs) and diffraction effects such as Rayleigh anomalies (RAs) play key roles in the transmission of light through periodic subwavelength hole arrays in metal films. Using a combination of theory and experiment we show how refractive index (RI) sensitive transmission features arise from hole arrays in thin gold films. We show that large transmission amplitude changes occur over a narrow range of RI values due to coupling between RAs and SPPs on opposite sides of the metal film. Furthermore, we show how to predict, on the basis of a relatively simple analysis, the periodicity and other system parameters that should be used to achieve this "RA-SPP" effect for any desired RI range.


Assuntos
Ouro/química , Membranas Artificiais , Modelos Químicos , Nanoestruturas/química , Nanoestruturas/ultraestrutura , Refratometria/métodos , Ressonância de Plasmônio de Superfície/métodos , Simulação por Computador , Teste de Materiais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...