Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Neoplasia ; 46: 100940, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37913654

RESUMO

Radiation therapy is an established and effective anti-cancer treatment modality. Extensive pre-clinical experimentation has demonstrated that the pro-inflammatory properties of irradiation may be synergistic with checkpoint immunotherapy. Radiation induces double-stranded DNA breaks (dsDNA). Sensing of the dsDNA activates the cGAS/STING pathway, producing Type 1 interferons essential to recruiting antigen-presenting cells (APCs). Radiation promotes cytotoxic CD8 T-cell recruitment by releasing tumour-associated antigens captured and cross-presented by surveying antigen-presenting cells. Radiation-induced vascular normalisation may further promote T-cell trafficking and drug delivery. Radiation is also immunosuppressive. Recruitment of regulatory T cells (Tregs) and innate cells such as myeloid-derived suppressive cells (m-MDSCs) all counteract the immunostimulatory properties of radiation. Many innate immune cell types operate at the interface of the adaptive immune response. Innate immune cells, such as m-MDSCs, can exert their immunosuppressive effects by expressing immune checkpoints such as PD-L1, further highlighting the potential of combined radiation and checkpoint immunotherapy. Several early-phase clinical studies investigating the combination of radiation and immunotherapy have been disappointing. A greater appreciation of radiotherapy's impact on the innate immune system is essential to optimise radioimmunotherapy combinations. This review will summarise the impact of radiotherapy on crucial cells of the innate immune system and vital immunosuppressive cytokines.


Assuntos
Antineoplásicos , Neoplasias , Humanos , Imunidade Inata , Neoplasias/radioterapia , Imunidade Adaptativa/efeitos da radiação , Antineoplásicos/farmacologia , Imunoterapia , Microambiente Tumoral
2.
Br J Pharmacol ; 124(6): 1238-44, 1998 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-9720796

RESUMO

1. We have cloned, expressed and pharmacologically characterized the Human 5-HT5A receptor. 2. We have shown that ligand activation of the Human 5-HT5A receptor results in functional coupling to G-proteins in HEK-293 cells. 3. Stimulation of the receptor with 5-CT (5-carboxamidotryptamine) resulted in a dose-dependent increase in the % [35S]-GTPgammaS binding over the basal level. This is the first study to describe such G-protein activation for the Human 5-HT5A receptor in any cell. 4. A dose-dependent inhibition of cyclic AMP accumulation was observed in the recombinant Human 5-HT5A receptor cell line, suggesting a functional coupling to a G alpha i, G-protein in the HEK-293 cell line. 5. A ligand-stimulated reduction in the detectable level of the catalytic domain of protein kinase A (PKA) in nuclear extracts isolated from Human 5-HT5A expressing cells was observed. This observation was consistent with the reduction in the level of cyclic AMP accumulation, in response to receptor activation.


Assuntos
Proteínas de Ligação ao GTP/metabolismo , Receptores de Serotonina/metabolismo , Sequência de Aminoácidos , Sequência de Bases , Domínio Catalítico , Linhagem Celular , Núcleo Celular/enzimologia , Clonagem Molecular , Colforsina/farmacologia , AMP Cíclico/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Primers do DNA , DNA Complementar , Humanos , Dados de Sequência Molecular , Ligação Proteica , Receptores de Serotonina/efeitos dos fármacos , Receptores de Serotonina/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Homologia de Sequência de Aminoácidos , Serotonina/análogos & derivados , Serotonina/farmacologia , Agonistas do Receptor de Serotonina/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...