Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Acta Crystallogr D Struct Biol ; 78(Pt 1): 75-90, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-34981764

RESUMO

Disulfide-bond-forming proteins (Dsbs) play a crucial role in the pathogenicity of many Gram-negative bacteria. Disulfide-bond-forming protein A (DsbA) catalyzes the formation of the disulfide bonds necessary for the activity and stability of multiple substrate proteins, including many virulence factors. Hence, DsbA is an attractive target for the development of new drugs to combat bacterial infections. Here, two fragments, bromophenoxy propanamide (1) and 4-methoxy-N-phenylbenzenesulfonamide (2), were identified that bind to DsbA from the pathogenic bacterium Burkholderia pseudomallei, the causative agent of melioidosis. The crystal structures of oxidized B. pseudomallei DsbA (termed BpsDsbA) co-crystallized with 1 or 2 show that both fragments bind to a hydrophobic pocket that is formed by a change in the side-chain orientation of Tyr110. This conformational change opens a `cryptic' pocket that is not evident in the apoprotein structure. This binding location was supported by 2D-NMR studies, which identified a chemical shift perturbation of the Tyr110 backbone amide resonance of more than 0.05 p.p.m. upon the addition of 2 mM fragment 1 and of more than 0.04 p.p.m. upon the addition of 1 mM fragment 2. Although binding was detected by both X-ray crystallography and NMR, the binding affinity (Kd) for both fragments was low (above 2 mM), suggesting weak interactions with BpsDsbA. This conclusion is also supported by the crystal structure models, which ascribe partial occupancy to the ligands in the cryptic binding pocket. Small fragments such as 1 and 2 are not expected to have a high energetic binding affinity due to their relatively small surface area and the few functional groups that are available for intermolecular interactions. However, their simplicity makes them ideal for functionalization and optimization. The identification of the binding sites of 1 and 2 to BpsDsbA could provide a starting point for the development of more potent novel antimicrobial compounds that target DsbA and bacterial virulence.


Assuntos
Antibacterianos/química , Burkholderia pseudomallei/química , Antibacterianos/farmacologia , Sítios de Ligação , Burkholderia pseudomallei/efeitos dos fármacos , Cristalografia por Raios X , Dissulfetos/química , Espectroscopia de Ressonância Magnética , Estrutura Molecular
2.
ChemMedChem ; 17(6): e202100673, 2022 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-34978144

RESUMO

DsbA enzymes catalyze oxidative folding of proteins that are secreted into the periplasm of Gram-negative bacteria, and they are indispensable for the virulence of human pathogens such as Vibrio cholerae and Escherichia coli. Therefore, targeting DsbA represents an attractive approach to control bacterial virulence. X-ray crystal structures reveal that DsbA enzymes share a similar fold, however, the hydrophobic groove adjacent to the active site, which is implicated in substrate binding, is shorter and flatter in the structure of V. cholerae DsbA (VcDsbA) compared to E. coli DsbA (EcDsbA). The flat and largely featureless nature of this hydrophobic groove is challenging for the development of small molecule inhibitors. Using fragment-based screening approaches, we have identified a novel small molecule, based on the benzimidazole scaffold, that binds to the hydrophobic groove of oxidized VcDsbA with a KD of 446±10 µM. The same benzimidazole compound has ∼8-fold selectivity for VcDsbA over EcDsbA and binds to oxidized EcDsbA, with KD >3.5 mM. We generated a model of the benzimidazole complex with VcDsbA using NMR data but were unable to determine the structure of the benzimidazole bound EcDsbA using either NMR or X-ray crystallography. Therefore, a structural basis for the observed selectivity is unclear. To better understand ligand binding to these two enzymes we crystallized each of them in complex with a known ligand, the bile salt sodium taurocholate. The crystal structures show that taurocholate adopts different binding poses in complex with VcDsbA and EcDsbA, and reveal the protein-ligand interactions that stabilize the different modes of binding. This work highlights the capacity of fragment-based drug discovery to identify inhibitors of challenging protein targets. In addition, it provides a starting point for development of more potent and specific VcDsbA inhibitors that act through a novel anti-virulence mechanism.


Assuntos
Proteínas de Escherichia coli , Vibrio cholerae , Antibacterianos/química , Antibacterianos/farmacologia , Proteínas de Bactérias/metabolismo , Benzimidazóis , Cristalografia por Raios X , Escherichia coli , Humanos , Ligantes , Isomerases de Dissulfetos de Proteínas
3.
Sci Rep ; 10(1): 17398, 2020 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-33060678

RESUMO

Plantacyclin B21AG is a circular bacteriocin produced by Lactiplantibacillus plantarum B21 which displays antimicrobial activity against various Gram-positive bacteria including foodborne pathogens, Listeria monocytogenes and Clostridium perfringens. It is a 58-amino acid cyclised antimicrobial peptide, with the N and C termini covalently linked together. The circular peptide backbone contributes to remarkable stability, conferring partial proteolytic resistance and structural integrity under a wide temperature and pH range. Here, we report the first crystal structure of a circular bacteriocin from a food grade Lactobacillus. The protein was crystallised using the hanging drop vapour diffusion method and the structure solved to a resolution of 1.8 Å. Sequence alignment against 18 previously characterised circular bacteriocins revealed the presence of conserved charged and aromatic residues. Alanine substitution mutagenesis validated the importance of these residues. Minimum inhibitory concentration analysis of these Ala mutants showed that Phe8Ala and Trp45Ala mutants displayed a 48- and 32-fold reduction in activity, compared to wild type. The Lys19Ala mutant displayed the weakest activity, with a 128-fold reduction. These experiments demonstrate the relative importance of aromatic and cationic residues for the antimicrobial activity of plantacyclin B21AG and by extension, other circular bacteriocins sharing these evolutionarily conserved residues.


Assuntos
Anti-Infecciosos/farmacologia , Bacteriocinas/química , Bacteriocinas/farmacologia , Sequência de Aminoácidos , Bacteriocinas/genética , Cristalografia por Raios X , Testes de Sensibilidade Microbiana , Mutagênese Sítio-Dirigida , Conformação Proteica , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
4.
J Biomol NMR ; 74(10-11): 595-611, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32761504

RESUMO

The presence of suitable cavities or pockets on protein structures is a general criterion for a therapeutic target protein to be classified as 'druggable'. Many disease-related proteins that function solely through protein-protein interactions lack such pockets, making development of inhibitors by traditional small-molecule structure-based design methods much more challenging. The 22 kDa bacterial thiol oxidoreductase enzyme, DsbA, from the gram-negative bacterium Burkholderia pseudomallei (BpsDsbA) is an example of one such target. The crystal structure of oxidized BpsDsbA lacks well-defined surface pockets. BpsDsbA is required for the correct folding of numerous virulence factors in B. pseudomallei, and genetic deletion of dsbA significantly attenuates B. pseudomallei virulence in murine infection models. Therefore, BpsDsbA is potentially an attractive drug target. Herein we report the identification of a small molecule binding site adjacent to the catalytic site of oxidized BpsDsbA. 1HN CPMG relaxation dispersion NMR measurements suggest that the binding site is formed transiently through protein dynamics. Using fragment-based screening, we identified a small molecule that binds at this site with an estimated affinity of KD ~ 500 µM. This fragment inhibits BpsDsbA enzymatic activity in vitro. The binding mode of this molecule has been characterized by NMR data-driven docking using HADDOCK. These data provide a starting point towards the design of more potent small molecule inhibitors of BpsDsbA.


Assuntos
Ressonância Magnética Nuclear Biomolecular/métodos , Proteína Dissulfeto Redutase (Glutationa)/química , Animais , Sítios de Ligação , Burkholderia pseudomallei/enzimologia , Burkholderia pseudomallei/patogenicidade , Domínio Catalítico , Ligantes , Camundongos , Oxirredução , Ligação Proteica , Conformação Proteica , Proteína Dissulfeto Redutase (Glutationa)/genética , Relação Quantitativa Estrutura-Atividade , Proteínas Recombinantes , Bibliotecas de Moléculas Pequenas/química , Solubilidade , Tiazóis/química
5.
PLoS One ; 14(9): e0222595, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31536549

RESUMO

Chlamydia trachomatis is an obligate intracellular bacterium with a distinctive biphasic developmental cycle that alternates between two distinct cell types; the extracellular infectious elementary body (EB) and the intracellular replicating reticulate body (RB). Members of the genus Chlamydia are dependent on the formation and degradation of protein disulfide bonds. Moreover, disulfide cross-linking of EB envelope proteins is critical for the infection phase of the developmental cycle. We have identified in C. trachomatis a homologue of the Disulfide Bond forming membrane protein Escherichia coli (E. coli) DsbB (hereafter named CtDsbB) and-using recombinant purified proteins-demonstrated that it is the redox partner of the previously characterised periplasmic oxidase C. trachomatis Disulfide Bond protein A (CtDsbA). CtDsbA protein was detected in C. trachomatis inclusion vacuoles at 20 h post infection, with more detected at 32 and similar levels at 44 h post infection as the developmental cycle proceeds. As a redox pair, CtDsbA and CtDsbB largely resemble their homologous counterparts in E. coli; CtDsbA is directly oxidised by CtDsbB, in a reaction in which both periplasmic cysteine pairs of CtDsbB are required for complete activity. In our hands, this reaction is slow relative to that observed for E. coli equivalents, although this may reflect a non-native expression system and use of a surrogate quinone cofactor. CtDsbA has a second non-catalytic disulfide bond, which has a small stabilising effect on the protein's thermal stability, but which does not appear to influence the interaction of CtDsbA with its partner protein CtDsbB. Expression of CtDsbA during the RB replicative phase and during RB to EB differentiation coincided with the oxidation of the chlamydial outer membrane complex (COMC). Together with our demonstration of an active redox pairing, our findings suggest a potential role for CtDsbA and CtDsbB in the critical disulfide bond formation step in the highly regulated development cycle.


Assuntos
Proteínas de Bactérias/metabolismo , Chlamydia trachomatis/metabolismo , Dissulfetos/metabolismo , Proteínas de Membrana/metabolismo , Oxirredutases/metabolismo , Isomerases de Dissulfetos de Proteínas/metabolismo , Escherichia coli/metabolismo , Oxirredução , Domínios Proteicos/fisiologia , Proteínas Recombinantes/metabolismo
6.
Crit Rev Microbiol ; 45(1): 33-50, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30663449

RESUMO

Disulphide bonds are widely used among all domains of life to provide structural stability to proteins and to regulate enzyme activity. Chlamydia spp. are obligate intracellular bacteria that are especially dependent on the formation and degradation of protein disulphide bonds. Members of the genus Chlamydia have a unique biphasic developmental cycle alternating between two distinct cell types; the extracellular infectious elementary body (EB) and the intracellular replicating reticulate body. The proteins in the envelope of the EB are heavily cross-linked with disulphides and this is known to be critical for this infectious phase. In this review, we provide a comprehensive summary of what is known about the redox state of chlamydial envelope proteins throughout the developmental cycle. We focus especially on the factors responsible for degradation and formation of disulphide bonds in Chlamydia and how this system compares with redox regulation in other organisms. Focussing on the unique biology of Chlamydia enables us to provide important insights into how specialized suites of disulphide bond (Dsb) proteins cater for specific bacterial environments and lifecycles.


Assuntos
Proteínas de Bactérias/metabolismo , Chlamydia/metabolismo , Dissulfetos/metabolismo , Proteínas de Membrana/metabolismo , Oxirredução
7.
Infect Immun ; 86(5)2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29440370

RESUMO

The naturally antibiotic-resistant bacterium Burkholderia pseudomallei is the causative agent of melioidosis, a disease with stubbornly high mortality and a complex, protracted treatment regimen. The worldwide incidence of melioidosis is likely grossly underreported, though it is known to be highly endemic in northern Australia and Southeast Asia. Bacterial disulfide bond (DSB) proteins catalyze the oxidative folding and isomerization of disulfide bonds in substrate proteins. In the present study, we demonstrate that B. pseudomallei membrane protein disulfide bond protein B (BpsDsbB) forms a functional redox relay with the previously characterized virulence mediator B. pseudomallei disulfide bond protein A (BpsDsbA). Genomic analysis of diverse B. pseudomallei clinical isolates demonstrated that dsbB is a highly conserved core gene. Critically, we show that DsbB is required for virulence in B. pseudomallei A panel of B. pseudomalleidsbB deletion strains (K96243, 576, MSHR2511, MSHR0305b, and MSHR5858) were phenotypically diverse according to the results of in vitro assays that assess hallmarks of virulence. Irrespective of their in vitro virulence phenotypes, two deletion strains were attenuated in a BALB/c mouse model of infection. A crystal structure of a DsbB-derived peptide complexed with BpsDsbA provides the first molecular characterization of their interaction. This work contributes to our broader understanding of DSB redox biology and will support the design of antimicrobial drugs active against this important family of bacterial virulence targets.


Assuntos
Burkholderia pseudomallei/genética , Burkholderia pseudomallei/patogenicidade , Melioidose/patologia , Proteínas de Membrana/imunologia , Camundongos Endogâmicos BALB C/imunologia , Oxirredutases/imunologia , Virulência/genética , Animais , Austrália , Burkholderia pseudomallei/imunologia , Modelos Animais de Doenças , Melioidose/genética , Melioidose/microbiologia , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos , Oxirredutases/genética , Oxirredutases/metabolismo , Virulência/imunologia
8.
PLoS One ; 12(3): e0173436, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28346540

RESUMO

At a time when the antibiotic drug discovery pipeline has stalled, antibiotic resistance is accelerating with catastrophic implications for our ability to treat bacterial infections. Globally we face the prospect of a future when common infections can once again kill. Anti-virulence approaches that target the capacity of the bacterium to cause disease rather than the growth or survival of the bacterium itself offer a tantalizing prospect of novel antimicrobials. They may also reduce the propensity to induce resistance by removing the strong selection pressure imparted by bactericidal or bacteriostatic agents. In the human pathogen Pseudomonas aeruginosa, disulfide bond protein A (PaDsbA1) plays a central role in the oxidative folding of virulence factors and is therefore an attractive target for the development of new anti-virulence antimicrobials. Using a fragment-based approach we have identified small molecules that bind to PaDsbA1. The fragment hits show selective binding to PaDsbA1 over the DsbA protein from Escherichia coli, suggesting that developing species-specific narrow-spectrum inhibitors of DsbA enzymes may be feasible. Structures of a co-complex of PaDsbA1 with the highest affinity fragment identified in the screen reveal that the fragment binds on the non-catalytic surface of the protein at a domain interface. This biophysical and structural data represent a starting point in the development of higher affinity compounds, which will be assessed for their potential as selective PaDsbA1 inhibitors.


Assuntos
Antibacterianos/química , Antibacterianos/farmacologia , Proteínas de Bactérias/antagonistas & inibidores , Isomerases de Dissulfetos de Proteínas/antagonistas & inibidores , Infecções por Pseudomonas/microbiologia , Pseudomonas aeruginosa/efeitos dos fármacos , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Cristalografia por Raios X , Descoberta de Drogas , Humanos , Simulação de Acoplamento Molecular , Ligação Proteica , Isomerases de Dissulfetos de Proteínas/química , Isomerases de Dissulfetos de Proteínas/metabolismo , Infecções por Pseudomonas/tratamento farmacológico , Pseudomonas aeruginosa/química , Pseudomonas aeruginosa/metabolismo , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/farmacologia , Fatores de Virulência/metabolismo
9.
PLoS One ; 11(12): e0168485, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-28030602

RESUMO

The Gram negative bacteria Chlamydia trachomatis is an obligate intracellular human pathogen that can cause pelvic inflammatory disease, infertility and blinding trachoma. C. trachomatis encodes a homolog of the dithiol oxidoreductase DsbA. Bacterial DsbA proteins introduce disulfide bonds to folding proteins providing structural bracing for secreted virulence factors, consequently these proteins are potential targets for antimicrobial drugs. Despite sharing functional and structural characteristics, the DsbA enzymes studied to date vary widely in their redox character. In this study we show that the truncated soluble form of the predicted membrane anchored protein C. trachomatis DsbA (CtDsbA) has oxidase activity and redox properties broadly similar to other characterized DsbA proteins. However CtDsbA is distinguished from other DsbAs by having six cysteines, including a second disulfide bond, and an unusual dipeptide sequence in its catalytic motif (Cys-Ser-Ala-Cys). We report the 2.7 Å crystal structure of CtDsbA revealing a typical DsbA fold, which is most similar to that of DsbA-II type proteins. Consistent with this, the catalytic surface of CtDsbA is negatively charged and lacks the hydrophobic groove found in EcDsbA and DsbAs from other enterobacteriaceae. Biochemical characterization of CtDsbA reveals it to be weakly oxidizing compared to other DsbAs and with only a mildly destabilizing active site disulfide bond. Analysis of the crystal structure suggests that this redox character is consistent with a lack of contributing factors to stabilize the active site nucleophilic thiolate relative to more oxidizing DsbA proteins.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Chlamydia trachomatis/fisiologia , Cisteína/metabolismo , Oxirredutases/metabolismo , Isomerases de Dissulfetos de Proteínas/metabolismo , Sequência de Aminoácidos , Proteínas de Bactérias/genética , Domínio Catalítico , Cristalografia por Raios X , Cisteína/química , Genoma Bacteriano , Humanos , Modelos Moleculares , Oxirredução , Oxirredutases/química , Conformação Proteica , Isomerases de Dissulfetos de Proteínas/química , Dobramento de Proteína , Homologia de Sequência de Aminoácidos
10.
Acta Crystallogr D Biol Crystallogr ; 71(Pt 12): 2386-95, 2015 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-26627647

RESUMO

Pseudomonas aeruginosa is an opportunistic human pathogen for which new antimicrobial drug options are urgently sought. P. aeruginosa disulfide-bond protein A1 (PaDsbA1) plays a pivotal role in catalyzing the oxidative folding of multiple virulence proteins and as such holds great promise as a drug target. As part of a fragment-based lead discovery approach to PaDsbA1 inhibitor development, the identification of a crystal form of PaDsbA1 that was more suitable for fragment-soaking experiments was sought. A previously identified crystallization condition for this protein was unsuitable, as in this crystal form of PaDsbA1 the active-site surface loops are engaged in the crystal packing, occluding access to the target site. A single residue involved in crystal-packing interactions was substituted with an amino acid commonly found at this position in closely related enzymes, and this variant was successfully used to generate a new crystal form of PaDsbA1 in which the active-site surface is more accessible for soaking experiments. The PaDsbA1 variant displays identical redox character and in vitro activity to wild-type PaDsbA1 and is structurally highly similar. Two crystal structures of the PaDsbA1 variant were determined in complex with small molecules bound to the protein active site. These small molecules (MES, glycerol and ethylene glycol) were derived from the crystallization or cryoprotectant solutions and provide a proof of principle that the reported crystal form will be amenable to co-crystallization and soaking with small molecules designed to target the protein active-site surface.


Assuntos
Ácidos Alcanossulfônicos/química , Proteínas de Bactérias/química , Etilenoglicol/química , Glicerol/química , Morfolinas/química , Isomerases de Dissulfetos de Proteínas/química , Pseudomonas aeruginosa/química , Sequência de Aminoácidos , Substituição de Aminoácidos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Domínio Catalítico , Cristalografia por Raios X , Expressão Gênica , Modelos Moleculares , Dados de Sequência Molecular , Mutação , Ligação Proteica , Isomerases de Dissulfetos de Proteínas/genética , Isomerases de Dissulfetos de Proteínas/metabolismo , Engenharia de Proteínas , Estrutura Secundária de Proteína , Pseudomonas aeruginosa/enzimologia , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência , Homologia Estrutural de Proteína
11.
PLoS One ; 10(7): e0133805, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26225423

RESUMO

Antibacterial drugs with novel scaffolds and new mechanisms of action are desperately needed to address the growing problem of antibiotic resistance. The periplasmic oxidative folding system in Gram-negative bacteria represents a possible target for anti-virulence antibacterials. By targeting virulence rather than viability, development of resistance and side effects (through killing host native microbiota) might be minimized. Here, we undertook the design of peptidomimetic inhibitors targeting the interaction between the two key enzymes of oxidative folding, DsbA and DsbB, with the ultimate goal of preventing virulence factor assembly. Structures of DsbB--or peptides--complexed with DsbA revealed key interactions with the DsbA active site cysteine, and with a hydrophobic groove adjacent to the active site. The present work aimed to discover peptidomimetics that target the hydrophobic groove to generate non-covalent DsbA inhibitors. The previously reported structure of a Proteus mirabilis DsbA active site cysteine mutant, in a non-covalent complex with the heptapeptide PWATCDS, was used as an in silico template for virtual screening of a peptidomimetic fragment library. The highest scoring fragment compound and nine derivatives were synthesized and evaluated for DsbA binding and inhibition. These experiments discovered peptidomimetic fragments with inhibitory activity at millimolar concentrations. Although only weakly potent relative to larger covalent peptide inhibitors that interact through the active site cysteine, these fragments offer new opportunities as templates to build non-covalent inhibitors. The results suggest that non-covalent peptidomimetics may need to interact with sites beyond the hydrophobic groove in order to produce potent DsbA inhibitors.


Assuntos
Proteínas de Bactérias/metabolismo , Oxirredutases/metabolismo , Peptídeos/farmacologia , Peptidomiméticos/farmacologia , Isomerases de Dissulfetos de Proteínas/metabolismo , Tolueno/análogos & derivados , Domínio Catalítico/efeitos dos fármacos , Cisteína/metabolismo , Proteus mirabilis/efeitos dos fármacos , Proteus mirabilis/metabolismo , Tolueno/metabolismo , Virulência/efeitos dos fármacos , Fatores de Virulência/metabolismo
12.
FEBS J ; 281(9): 2190-2201, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24597976

RESUMO

Understanding the process that underlies multidrug recognition and efflux by P-glycoprotein (ABCB1) remains a key biological challenge. Structural data have recently become available for the murine and Caenorhabditis elegans homologues of ABCB1; however all structures were obtained in the absence of nucleotide. A feature of these structures was the presence of a central cavity that is inaccessible from the extracellular face of the protein. To determine the conformational dynamics of this region several residues in transmembrane helices TM6 (331, 343 and 354) and TM12 (980) were mutated to cysteine. Based upon structural predictions, these residues are proposed to line, or reside proximal to, the central cavity. The mutant isoforms were labelled with a paramagnetic probe enabling the application of EPR spectroscopic methods. Power saturation EPR spectra were recorded in the presence of hydrophobic (O2 ) or hydrophilic (NiEDDA) quenching agents to study the local environment of each residue. ABCB1 was trapped in both its nucleotide-bound and post-hydrolytic conformations and EPR spectra were again recorded in the presence and absence of quenching agents. The EPR line shapes provide information on the movements of these residues within TM6 and TM12 during ATP hydrolysis. Rationalization of the data with molecular dynamic simulations indicates that the cavity is converted to a configuration open to the aqueous phase following nucleotide binding, thereby suggesting alternating access to the cavity on opposite sides of the membrane during translocation.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Trifosfato de Adenosina/metabolismo , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/química , Animais , Espectroscopia de Ressonância de Spin Eletrônica , Eletroforese em Gel de Poliacrilamida , Hidrólise , Insetos , Simulação de Dinâmica Molecular , Conformação Proteica
13.
Biochim Biophys Acta ; 1844(8): 1391-401, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24487020

RESUMO

By catalyzing oxidative protein folding, the bacterial disulfide bond protein A (DsbA) plays an essential role in the assembly of many virulence factors. Predictably, DsbA disruption affects multiple downstream effector molecules, resulting in pleiotropic effects on the virulence of important human pathogens. These findings mark DsbA as a master regulator of virulence, and identify the enzyme as a target for a new class of antivirulence agents that disarm pathogenic bacteria rather than killing them. The purpose of this article is to discuss and expand upon recent findings on DsbA and to provide additional novel insights into the druggability of this important disulfide oxidoreductase by comparing the structures and properties of 13 well-characterized DsbA enzymes. Our structural analysis involved comparison of the overall fold, the surface properties, the conformations of three loops contributing to the binding surface and the sequence identity of residues contributing to these loops. Two distinct structural classes were identified, classes I and II, which are differentiated by their central ß-sheet arrangements and which roughly separate the DsbAs produced by Gram-negative from Gram-positive organisms. The classes can be further subdivided into a total of four subclasses on the basis of surface features. Class Ia is equivalent to the Enterobacteriaceae class that has been defined previously. Bioinformatic analyses support the classification of DsbAs into 3 of the 4 subclasses, but did not pick up the 4th subclass which is only apparent from analysis of DsbA electrostatic surface properties. In the context of inhibitor development, the discrete structural subclasses provide a platform for developing DsbA inhibitory scaffolds with a subclass-wide spectrum of activity. We expect that more DsbA classes are likely to be identified, as enzymes from other pathogens are explored, and we highlight the issues associated with structure-based inhibitor development targeting this pivotal mediator of bacterial virulence. This article is part of a Special Issue entitled: Thiol-Based Redox Processes.


Assuntos
Desenho de Fármacos , Inibidores Enzimáticos/farmacologia , Isomerases de Dissulfetos de Proteínas/química , Isomerases de Dissulfetos de Proteínas/classificação , Fatores de Virulência/metabolismo , Virulência/efeitos dos fármacos , Humanos
14.
Antioxid Redox Signal ; 20(4): 606-17, 2014 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-23901809

RESUMO

AIMS: The intracellular pathogen Burkholderia pseudomallei causes the disease melioidosis, a major source of morbidity and mortality in southeast Asia and northern Australia. The need to develop novel antimicrobials is compounded by the absence of a licensed vaccine and the bacterium's resistance to multiple antibiotics. In a number of clinically relevant Gram-negative pathogens, DsbA is the primary disulfide oxidoreductase responsible for catalyzing the formation of disulfide bonds in secreted and membrane-associated proteins. In this study, a putative B. pseudomallei dsbA gene was evaluated functionally and structurally and its contribution to infection assessed. RESULTS: Biochemical studies confirmed the dsbA gene encodes a protein disulfide oxidoreductase. A dsbA deletion strain of B. pseudomallei was attenuated in both macrophages and a BALB/c mouse model of infection and displayed pleiotropic phenotypes that included defects in both secretion and motility. The 1.9 Å resolution crystal structure of BpsDsbA revealed differences from the classic member of this family Escherichia coli DsbA, in particular within the region surrounding the active site disulfide where EcDsbA engages with its partner protein E. coli DsbB, indicating that the interaction of BpsDsbA with its proposed partner BpsDsbB may be distinct from that of EcDsbA-EcDsbB. INNOVATION: This study has characterized BpsDsbA biochemically and structurally and determined that it is required for virulence of B. pseudomallei. CONCLUSION: These data establish a critical role for BpsDsbA in B. pseudomallei infection, which in combination with our structural characterization of BpsDsbA will facilitate the future development of rationally designed inhibitors against this drug-resistant organism.


Assuntos
Proteínas de Bactérias/química , Burkholderia pseudomallei/enzimologia , Proteína Dissulfeto Redutase (Glutationa)/química , Animais , Proteínas de Bactérias/metabolismo , Burkholderia pseudomallei/patogenicidade , Domínio Catalítico , Linhagem Celular , Cristalografia por Raios X , Feminino , Camundongos , Camundongos Endogâmicos BALB C , Modelos Moleculares , Oxirredução , Peptídeo Hidrolases/metabolismo , Proteína Dissulfeto Redutase (Glutationa)/metabolismo , Estrutura Secundária de Proteína , Fosfolipases Tipo C/metabolismo , Virulência
15.
Acta Crystallogr D Biol Crystallogr ; 67(Pt 5): 447-54, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21543847

RESUMO

The structure of the human major histocompatability (MHC) class I molecule HLA-A*0301 (HLA-A3) in complex with a nonameric peptide (KLIETYFSK) has been determined by X-ray crystallography to 2.7 Šresolution. HLA-A3 is a predisposing allele for multiple sclerosis (MS), an autoimmune disease of the central nervous system. The KLIETYFSK peptide is a naturally processed epitope of proteolipid protein, a myelin protein and candidate target for immune-mediated myelin destruction in MS. Comparison of the structure of HLA-A3 with that of HLA-A2, an MHC class I molecule which is protective against MS, indicates that both MHC class I molecules present very similar faces for T-cell receptor recognition whilst differing in the specificity of their peptide-binding grooves. These characteristics may underlie the opposing (predisposing versus protective) associations that they exhibit both in humans and in mouse models of MS-like disease. Furthermore, subtle alterations within the peptide-binding groove of HLA-A3 and other A3-like MHC class I molecules, members of the so-called A3 superfamily, may be sufficient to alter their presentation of autoantigen peptides such as KLIETYFSK. This in turn may modulate their contribution to the associated risk of autoimmune disease.


Assuntos
Antígeno HLA-A3/química , Antígeno HLA-A3/metabolismo , Esclerose Múltipla/metabolismo , Proteolipídeos/metabolismo , Sequência de Aminoácidos , Sítios de Ligação , Cristalografia por Raios X , Antígeno HLA-A2/química , Antígeno HLA-A2/metabolismo , Humanos , Modelos Moleculares , Peptídeos/química , Peptídeos/metabolismo , Proteolipídeos/química
16.
Curr Drug Metab ; 12(8): 722-31, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21434857

RESUMO

The multidrug resistant phenotype of cancer cells can often result from the over-production of a number of ATP binding cassette (ABC) transporters, including P-glycoprotein (P-gp). These multidrug efflux transporters expel administered anti-cancer drugs from the cancer cell, preventing sufficient intracellular drug accumulation and ultimately, drug efficacy. The co-administration of compounds that can impede the efflux of chemotherapeutic agents by these ABC transporters can concomitantly modulate various cytochrome P450 (CYP450) enzymes, consequently impacting upon anti-cancer drug metabolism. This can further result in unfavourable drug-drug interactions and altered pharmacokinetic properties of the administered anti-cancer drugs with knock-on adverse cytotoxic side effects. This review will discuss some of the P-gp inhibitors designed and employed to date, as well as expressing our views of the shortcomings of their design strategy. We present a medicinal chemist's wish list for the paradigmatic P-gp inhibitor molecule and examine the possible future strategies that could be implemented to achieve its design.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP/antagonistas & inibidores , Antineoplásicos/farmacologia , Neoplasias/tratamento farmacológico , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Transportadores de Cassetes de Ligação de ATP/metabolismo , Animais , Antineoplásicos/efeitos adversos , Antineoplásicos/farmacocinética , Sistema Enzimático do Citocromo P-450/metabolismo , Desenho de Fármacos , Interações Medicamentosas , Resistencia a Medicamentos Antineoplásicos , Humanos , Neoplasias/patologia
17.
Nat Med ; 14(11): 1227-35, 2008 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-18953350

RESUMO

The major known genetic risk factors in multiple sclerosis reside in the major histocompatibility complex (MHC) region. Although there is strong evidence implicating MHC class II alleles and CD4(+) T cells in multiple sclerosis pathogenesis, possible contributions from MHC class I genes and CD8(+) T cells are controversial. We have generated humanized mice expressing the multiple sclerosis-associated MHC class I alleles HLA-A(*)0301 (encoding human leukocyte antigen-A3 (HLA-A3)) and HLA-A(*)0201 (encoding HLA-A2) and a myelin-specific autoreactive T cell receptor (TCR) derived from a CD8(+) T cell clone from an individual with multiple sclerosis to study mechanisms of disease susceptibility. We demonstrate roles for HLA-A3-restricted CD8(+) T cells in induction of multiple sclerosis-like disease and for CD4(+) T cells in its progression, and we also define a possible mechanism for HLA-A(*)0201-mediated protection. To our knowledge, these data provide the first direct evidence incriminating MHC class I genes and CD8(+) T cells in the pathogenesis of human multiple sclerosis and reveal a network of MHC interactions that shape the risk of multiple sclerosis.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Antígenos de Histocompatibilidade Classe I/imunologia , Esclerose Múltipla/imunologia , Animais , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Sistema Nervoso Central/imunologia , Regulação da Expressão Gênica , Antígenos de Histocompatibilidade Classe I/genética , Antígenos de Histocompatibilidade Classe I/metabolismo , Humanos , Camundongos , Camundongos Transgênicos , Esclerose Múltipla/genética , Esclerose Múltipla/metabolismo , Receptores de Antígenos de Linfócitos T/genética , Receptores de Antígenos de Linfócitos T/imunologia , Receptores de Antígenos de Linfócitos T/metabolismo , Timo/imunologia
18.
J Autoimmun ; 31(3): 201-7, 2008 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-18513924

RESUMO

Epidemiological and genetic data have consistently identified associations with HLA class II alleles in many autoimmune diseases. In multiple sclerosis (MS), an autoimmune disease targeting central nervous system (CNS) myelin, the DR2 haplotype (DRB1*1501, DRB5*0101 and DQB1*0602) remains the strongest identified genetic risk factor in Caucasians. However, it is hard to tease apart the precise contributions of its constituent individual alleles and their modes of action remain poorly understood, due in part to the strong linkage disequilibrium in this region. Recent work in humanized mice indicates functional epistatic interactions whereby DRB5*0101 directly modulates the severity of the ensuing disease through activation-induced cell death (AICD) of encephalitogenic T cells which are restricted by DRB1*1501. Complementary structural studies help to explain how these alleles may facilitate thymic escape of autoreactive T cells and contribute to peripheral T cell activation via suboptimal binding interactions and mechanisms of molecular mimicry. Here we discuss the emerging role of the constituent alleles of the DR2 haplotype and our ongoing efforts to uncover the mechanisms by which they influence MS pathogenesis.


Assuntos
Antígeno HLA-DR2/genética , Antígeno HLA-DR2/imunologia , Esclerose Múltipla/genética , Esclerose Múltipla/imunologia , Animais , Antígeno HLA-DR2/química , Haplótipos/genética , Humanos , Camundongos , Linfócitos T/imunologia , Linfócitos T/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...