Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Autophagy ; : 1-12, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38920354

RESUMO

The evolutionarily conserved ATG4 cysteine proteases regulate macroautophagy/autophagy through the priming and deconjugation of the Atg8-family proteins. In mammals there are four ATG4 family members (ATG4A, ATG4B, ATG4C, ATG4D) but ATG4D has been relatively understudied. Heightened interest in ATG4D has been stimulated by recent links to human disease. Notably, genetic variations in human ATG4D were implicated in a heritable neurodevelopmental disorder. Genetic analyses in dogs, along with loss-of-function zebrafish and mouse models, further support a neuroprotective role for ATG4D. Here we discuss the evidence connecting ATG4D to neurological diseases and other pathologies and summarize its roles in both autophagy-dependent and autophagy-independent cellular processes.Abbrevation: ATG: autophagy related; BafA1: bafilomycin A1; BCL2: BCL2 apoptosis regulator; BH3: BCL2 homology region 3; CASP3: caspase 3; EV: extracellular vesicle; GABA: gamma aminobutyric acid; GABARAP: GABA type A receptor-associated protein; GABARAPL1: GABA type A receptor associated protein like 1; GABARAPL2: GABA type A receptor associated protein like 2; GFP: green fluorescent protein; LIR: LC3-interacting region; MAP1LC3: microtubule associated protein 1 light chain 3; MEF: mouse embryonic fibroblast; MYC: MYC proto-oncogene, bHLH transcription factor; PE: phosphatidylethanolamine; PS: phosphatidylserine; QKO: quadruple knockout; SDS-PAGE: sodium dodecyl sulfate-polyacrylamide gel; SQSTM1: sequestosome 1.

2.
Nat Commun ; 14(1): 308, 2023 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-36658161

RESUMO

Spectral matching of MS2 fragmentation spectra has become a popular method for characterizing natural products libraries but identification remains challenging due to differences in MS2 fragmentation properties between instruments and the low coverage of current spectral reference libraries. To address this bottleneck we present Structural similarity Network Annotation Platform for Mass Spectrometry (SNAP-MS) which matches chemical similarity grouping in the Natural Products Atlas to grouping of mass spectrometry features from molecular networking. This approach assigns compound families to molecular networking subnetworks without the need for experimental or calculated reference spectra. We demonstrate SNAP-MS can accurately annotate subnetworks built from both reference spectra and an in-house microbial extract library, and correctly predict compound families from published molecular networks acquired on a range of MS instrumentation. Compound family annotations for the microbial extract library are validated by co-injection of standards or isolation and spectroscopic analysis. SNAP-MS is freely available at www.npatlas.org/discover/snapms .


Assuntos
Produtos Biológicos , Humanos , Espectrometria de Massas
3.
Nucleic Acids Res ; 50(D1): D1317-D1323, 2022 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-34718710

RESUMO

Within the natural products field there is an increasing emphasis on the study of compounds from microbial sources. This has been fuelled by interest in the central role that microorganisms play in mediating both interspecies interactions and host-microbe relationships. To support the study of natural products chemistry produced by microorganisms we released the Natural Products Atlas, a database of known microbial natural products structures, in 2019. This paper reports the release of a new version of the database which includes a full RESTful application programming interface (API), a new website framework, and an expanded database that includes 8128 new compounds, bringing the total to 32 552. In addition to these structural and content changes we have added full taxonomic descriptions for all microbial taxa and have added chemical ontology terms from both NP Classifier and ClassyFire. We have also performed manual curation to review all entries with incomplete configurational assignments and have integrated data from external resources, including CyanoMetDB. Finally, we have improved the user experience by updating the Overview dashboard and creating a dashboard for taxonomic origin. The database can be accessed via the new interactive website at https://www.npatlas.org.


Assuntos
Produtos Biológicos/classificação , Bases de Dados Factuais , Interações entre Hospedeiro e Microrganismos/genética , Software , Bactérias/classificação , Classificação , Fungos/classificação , Humanos , Interface Usuário-Computador
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...