Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Science ; 384(6699): 983-986, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38815028

RESUMO

During Heinrich events, great armadas of icebergs episodically flooded the North Atlantic Ocean and weakened overturning circulation. The ice discharges of these episodes constrain the sensitivity of overturning circulation to iceberg melting. We reconstructed these ice discharges to be as high as 0.13 sverdrup (Sv) (1 Sv = 1 million cubic meters per second) during Heinrich event 4 and to average 0.029 Sv over all episodes. The present-day Greenland Ice Sheet calving of icebergs is comparable to that of a mid-range Heinrich event. As the future Greenland Ice Sheet recedes from marine-terminating outlets, its iceberg calving likely will not persist long enough for icebergs alone to cause catastrophic disruption to the Atlantic overturning circulation, although the accelerating Greenland runoff and continued global warming remain threats to the circulation stability.

2.
Nat Commun ; 12(1): 3658, 2021 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-34135336

RESUMO

The export of deep water from the Arctic to the Atlantic contributes to the formation of North Atlantic Deep Water, a crucial component of global ocean circulation. Records of protactinium-231 (231Pa) and thorium-230 (230Th) in Arctic sediments can provide a measure of this export, but well-constrained sedimentary budgets of these isotopes have been difficult to achieve in the Arctic Ocean. Previous studies revealed a deficit of 231Pa in central Arctic sediments, implying that some 231Pa is either transported to the margins, where it may be removed in areas of higher particle flux, or exported from the Arctic via deep water advection. Here we investigate this "missing sink" of Arctic 231Pa and find moderately increased 231Pa deposition along Arctic margins. Nonetheless, we determine that most 231Pa missing from the central basin must be lost via advection into the Nordic Seas, requiring deep water advection of 1.1 - 6.4 Sv through Fram Strait.

3.
Nat Commun ; 9(1): 2947, 2018 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-30054472

RESUMO

Abrupt climate changes in the past have been attributed to variations in Atlantic Meridional Overturning Circulation (AMOC) strength. However, the exact timing and magnitude of past AMOC shifts remain elusive, which continues to limit our understanding of the driving mechanisms of such climate variability. Here we show a consistent signal of the 231Pa/230Th proxy that reveals a spatially coherent picture of western Atlantic circulation changes over the last deglaciation, during abrupt millennial-scale climate transitions. At the onset of deglaciation, we observe an early slowdown of circulation in the western Atlantic from around 19 to 16.5 thousand years ago (ka), consistent with the timing of accelerated Eurasian ice melting. The subsequent weakened AMOC state persists for over a millennium (~16.5-15 ka), during which time there is substantial ice rafting from the Laurentide ice sheet. This timing indicates a role for melting ice in driving a two-step AMOC slowdown, with a positive feedback sustaining continued iceberg calving and climate change during Heinrich Stadial 1.

4.
Sci Rep ; 8(1): 4440, 2018 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-29535401

RESUMO

It is a longstanding observation that the frequency of volcanism periodically changes at times of global climate change. The existence of causal links between volcanism and Earth's climate remains highly controversial, partly because most related studies only cover one glacial cycle. Longer records are available from marine sediment profiles in which the distribution of tephras records frequency changes of explosive arc volcanism with high resolution and time precision. Here we show that tephras of IODP Hole U1437B (northwest Pacific) record a cyclicity of explosive volcanism within the last 1.1 Myr. A spectral analysis of the dataset yields a statistically significant spectral peak at the ~100 kyr period, which dominates the global climate cycles since the Middle Pleistocene. A time-domain analysis of the entire eruption and δ18O record of benthic foraminifera as climate/sea level proxy shows that volcanism peaks after the glacial maximum and ∼13 ± 2 kyr before the δ18O minimum right at the glacial/interglacial transition. The correlation is especially good for the last 0.7 Myr. For the period 0.7-1.1 Ma, during the Middle Pleistocene Transition (MPT), the correlation is weaker, since the 100 kyr periodicity in the δ18O record diminishes, while the tephra record maintains its strong 100 kyr periodicity.

5.
Nat Commun ; 5: 5817, 2014 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-25520057

RESUMO

The strength of Atlantic meridional overturning circulation is believed to affect the climate over glacial-interglacial and millennial timescales. The marine sedimentary (231)Pa/(230)Th ratio is a promising paleocirculation proxy, but local particle effects may bias individual reconstructions. Here we present new Atlantic sedimentary (231)Pa/(230)Th data from the Holocene, the last glacial maximum and Heinrich Stadial 1, a period of abrupt cooling ca. 17,500 years ago. We combine our results with published data from these intervals to create a spatially distributed sedimentary (231)Pa/(230)Th database. The data reveal a net (231)Pa deficit during each period, consistent with persistent (231)Pa export. In highly resolved cores, Heinrich (231)Pa/(230)Th ratios exceed glacial ratios at nearly all depths, indicating a significant reduction, although not cessation, of overturning during Heinrich Stadial 1. These results support the inference that weakened overturning was a driver of Heinrich cooling, while suggesting that abrupt climate oscillations do not necessarily require a complete shutdown of overturning.

6.
Proc Natl Acad Sci U S A ; 111(31): 11263-8, 2014 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-25049405

RESUMO

The last interglacial interval was terminated by the inception of a long, progressive glaciation that is attributed to astronomically influenced changes in the seasonal distribution of sunlight over the earth. However, the feedbacks, internal dynamics, and global teleconnections associated with declining northern summer insolation remain incompletely understood. Here we show that a crucial early step in glacial inception involves the weakening of the subpolar gyre (SPG) circulation of the North Atlantic Ocean. Detailed new records of microfossil foraminifera abundance and stable isotope ratios in deep sea sediments from Ocean Drilling Program site 984 south of Iceland reveal repeated, progressive cold water-mass expansions into subpolar latitudes during the last peak interglacial interval, marine isotope substage 5e. These movements are expressed as a sequence of progressively extensive southward advances and subsequent retreats of a hydrographic boundary that may have been analogous to the modern Arctic front, and associated with rapid changes in the strength of the SPG. This persistent millennial-scale oceanographic oscillation accompanied a long-term cooling trend at a time of slowly declining northern summer insolation, providing an early link in the propagation of those insolation changes globally, and resulting in a rapid transition from extensive regional warmth to the dramatic instability of the subsequent ∼ 100 ka.


Assuntos
Camada de Gelo , Oceanografia , Animais , Oceano Atlântico , Foraminíferos/fisiologia , Geografia , Sedimentos Geológicos , Islândia , Fatores de Tempo , Movimentos da Água
7.
Nat Commun ; 5: 3107, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24452197

RESUMO

Today's Sargasso Sea is nutrient starved, except for episodic upwelling events caused by wind-driven winter mixing and eddies. Enhanced diatom opal burial in Sargasso Sea sediments indicates that silicic acid, a limiting nutrient today, may have been more available in subsurface waters during Heinrich Stadials, millennial-scale climate perturbations of the last glacial and deglaciation. Here we use the geochemistry of opal-forming organisms from different water depths to demonstrate changes in silicic acid supply and utilization during the most recent Heinrich Stadial. We suggest that during the early phase (17.5-18 ka), wind-driven upwelling replenished silicic acid to the subsurface, resulting in low Si utilization. By 17 ka, stratification reduced the surface silicic acid supply leading to increased Si utilization efficiency. This abrupt shift in Si cycling would have contributed to high regional carbon export efficiency during the recent Heinrich Stadial, despite being a period of increasing atmospheric CO2.

8.
Nature ; 497(7451): 603-6, 2013 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-23719461

RESUMO

The Arctic Ocean has an important role in Earth's climate, both through surface processes such as sea-ice formation and transport, and through the production and export of waters at depth that contribute to the global thermohaline circulation. Deciphering the deep Arctic Ocean's palaeo-oceanographic history is a crucial part of understanding its role in climatic change. Here we show that sedimentary ratios of the radionuclides thorium-230 ((230)Th) and protactinium-231 ((231)Pa), which are produced in sea water and removed by particle scavenging on timescales of decades to centuries, respectively, record consistent evidence for the export of (231)Pa from the deep Arctic and may indicate continuous deep-water exchange between the Arctic and Atlantic oceans throughout the past 35,000 years. Seven well-dated box-core records provide a comprehensive overview of (231)Pa and (230)Th burial in Arctic sediments during glacial, deglacial and interglacial conditions. Sedimentary (231)Pa/(230)Th ratios decrease nearly linearly with increasing water depth above the core sites, indicating efficient particle scavenging in the upper water column and greater influence of removal by lateral transport at depth. Although the measured (230)Th burial is in balance with its production in Arctic sea water, integrated depth profiles for all time intervals reveal a deficit in (231)Pa burial that can be balanced only by lateral export in the water column. Because no enhanced sink for (231)Pa has yet been found in the Arctic, our records suggest that deep-water exchange through the Fram strait may export (231)Pa. Such export may have continued for the past 35,000 years, suggesting a century-scale replacement time for deep waters in the Arctic Ocean since the most recent glaciation and a persistent contribution of Arctic waters to the global ocean circulation.


Assuntos
Protoactínio/análise , Água do Mar/química , Movimentos da Água , Regiões Árticas , Oceano Atlântico , Foraminíferos/isolamento & purificação , Sedimentos Geológicos/química , História Antiga , Camada de Gelo , Tório/análise
9.
Proc Natl Acad Sci U S A ; 109(19): E1134-42, 2012 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-22331892

RESUMO

Deciphering the evolution of global climate from the end of the Last Glacial Maximum approximately 19 ka to the early Holocene 11 ka presents an outstanding opportunity for understanding the transient response of Earth's climate system to external and internal forcings. During this interval of global warming, the decay of ice sheets caused global mean sea level to rise by approximately 80 m; terrestrial and marine ecosystems experienced large disturbances and range shifts; perturbations to the carbon cycle resulted in a net release of the greenhouse gases CO(2) and CH(4) to the atmosphere; and changes in atmosphere and ocean circulation affected the global distribution and fluxes of water and heat. Here we summarize a major effort by the paleoclimate research community to characterize these changes through the development of well-dated, high-resolution records of the deep and intermediate ocean as well as surface climate. Our synthesis indicates that the superposition of two modes explains much of the variability in regional and global climate during the last deglaciation, with a strong association between the first mode and variations in greenhouse gases, and between the second mode and variations in the Atlantic meridional overturning circulation.


Assuntos
Clima , Aquecimento Global , Camada de Gelo , Temperatura , Atmosfera/análise , Evolução Biológica , Dióxido de Carbono/metabolismo , Ecossistema , Geografia , Metano/metabolismo , Modelos Teóricos , Método de Monte Carlo , Oxigênio/metabolismo , Análise de Componente Principal , Água do Mar , Fatores de Tempo , Movimentos da Água
10.
Science ; 330(6007): 1084-7, 2010 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-21097932

RESUMO

Deep-ocean carbonate ion concentrations ([CO(3)(2-)]) and carbon isotopic ratios (δ(13)C) place important constraints on past redistributions of carbon in the ocean-land-atmosphere system and hence provide clues to the causes of atmospheric CO(2) concentration changes. However, existing deep-sea [CO(3)(2-)] reconstructions conflict with one another, complicating paleoceanographic interpretations. Here, we present deep-sea [CO(3)(2-)] for five cores from the three major oceans quantified using benthic foraminiferal boron/calcium ratios since the last glacial period. Combined benthic δ(13)C and [CO(3)(2-)] results indicate that deep-sea-released CO(2) during the early deglacial period (17.5 to 14.5 thousand years ago) was preferentially stored in the atmosphere, whereas during the late deglacial period (14 to 10 thousand years ago), besides contributing to the contemporary atmospheric CO(2) rise, a substantial portion of CO(2) released from oceans was absorbed by the terrestrial biosphere.

11.
Science ; 327(5961): 75-8, 2010 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-20044573

RESUMO

Understanding changes in ocean circulation during the last deglaciation is crucial to unraveling the dynamics of glacial-interglacial and millennial climate shifts. We used neodymium isotope measurements on postdepositional iron-manganese oxide coatings precipitated on planktonic foraminifera to reconstruct changes in the bottom water source of the deep western North Atlantic at the Bermuda Rise. Comparison of our deep water source record with overturning strength proxies shows that both the deep water mass source and the overturning rate shifted rapidly and synchronously during the last deglacial transition. In contrast, any freshwater perturbation caused by Heinrich event 1 could have only affected shallow overturning. These findings show how changes in upper-ocean overturning associated with millennial-scale events differ from those associated with whole-ocean deglacial climate events.

12.
Science ; 324(5934): 1551-4, 2009 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-19541994

RESUMO

The dominant period of Pleistocene glacial cycles changed during the mid-Pleistocene from 40,000 years to 100,000 years, for as yet unknown reasons. Here we present a 2.1-million-year record of sea surface partial pressure of CO2 (Pco2), based on boron isotopes in planktic foraminifer shells, which suggests that the atmospheric partial pressure of CO2 (pco2) was relatively stable before the mid-Pleistocene climate transition. Glacial Pco2 was approximately 31 microatmospheres higher before the transition (more than 1 million years ago), but interglacial Pco2 was similar to that of late Pleistocene interglacial cycles (<450,000 years ago). These estimates are consistent with a close linkage between atmospheric CO2 concentration and global climate, but the lack of a gradual decrease in interglacial Pco2 does not support the suggestion that a long-term drawdown of atmospheric CO2 was the main cause of the climate transition.

13.
Science ; 316(5821): 66-9, 2007 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-17412948

RESUMO

The circulation of the deep Atlantic Ocean during the height of the last ice age appears to have been quite different from today. We review observations implying that Atlantic meridional overturning circulation during the Last Glacial Maximum was neither extremely sluggish nor an enhanced version of present-day circulation. The distribution of the decay products of uranium in sediments is consistent with a residence time for deep waters in the Atlantic only slightly greater than today. However, evidence from multiple water-mass tracers supports a different distribution of deep-water properties, including density, which is dynamically linked to circulation.

14.
Nature ; 429(6992): 611-2, 2004 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-15190334
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA