Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Toxicol Chem ; 37(2): 336-344, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-28940243

RESUMO

Provisional molecular weights and chemical formulas were assigned to 4 significant previously unidentified contaminants present during active fish kills in the Red River region of Oklahoma. The provisional identifications of these contaminants were determined using high-resolution liquid chromatography-time-of-flight mass spectrometry (LC-TOFMS), LC-Fourier transform ion cyclotron resonance mass spectrometry (LC-FTICRMS), and LC-ion trap mass spectrometry (LC-ITMS). Environmental water samples were extracted using a solid-phase extraction (SPE) method, and sediment samples were extracted using a modified sonication liquid extraction method. During screening of the samples, 2 major unknown chromatographic peaks were detected at m/z 624.3 and m/z 639.3. The peak at m/z 639.3 was firmly identified, through the use of an authentic standard, as a porphyrin, specifically chlorin-e6-trimethyl ester, with m/z 639.31735 (M + H)+ and molecular formula C37 H43 N4 O6 . The other major peak, at m/z 624.3 (M + H)+ , was identified as an amide-containing porphyrin. It was discovered that the amide compound was an artifact created during the SPE process by reaction of ammonium hydroxide at 1 of 3 potential reaction sites on chlorin-e6-trimethyl ester. Other unique nontargeted chemicals were also detected and the importance of their identification is discussed. Environ Toxicol Chem 2018;37:336-344. Published 2017 Wiley Periodicals Inc. on behalf of SETAC. This article is a US government work and, as such, is in the public domain in the United States of America.


Assuntos
Peixes/fisiologia , Rios/química , Poluentes Químicos da Água/análise , Animais , Clorofilídeos , Cromatografia Líquida , Geografia , Sedimentos Geológicos/química , Oklahoma , Porfirinas/química , Porfirinas/toxicidade , Espectrometria de Massas em Tandem
2.
J Chromatogr Sci ; 47(7): 505-9, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19772717

RESUMO

Chlorine has been widely used to kill disease-causing microbes in drinking water. During the disinfection process, organic and inorganic material in source waters can combine with chlorine and certain other chemical disinfectants to form disinfection by-products. The kind of disinfectant used can produce different types and levels of disinfectant byproducts in the drinking water, such as trihalomethanes and haloacetic acids (5HAAs). Currently, USEPA Method 552 utilizes a methyl tert-butyl ether extraction and diazomethane derivatization of HAAs and phenolic disinfectant by-products, and a gas chromatograph equipped with a capillary column to perform the separation of methyl-haloacetates and anisoles. To detect, gas chromatography and electron capture detector are used. This article demonstrates a simple method using direct injection ion chromatography hyphenated with mass spectrometry for the analysis of 5HAAs.


Assuntos
Acetatos/análise , Abastecimento de Água/análise , Espectrometria de Massas/métodos , Resíduos de Praguicidas/análise , Incerteza
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...