Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Dalton Trans ; 53(27): 11237-11241, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38916120

RESUMO

In order to bind guest molecules with exquisite selectivity, biological host molecules often employ low symmetry binding pockets. The majority of metallosupramolecular assemblies, however, rely on symmetrical ligands to form high-symmetry assemblies that enclosing similarly symmetrical cavities. Here we employ an unsymmetrical quaterpyridine ligand in combination with cobalt(II) to form a mixture of low-symmetry [M2L3] helicates and [M4L6] tetrahedra and their subsequent oxidation to Co(III)-containing assemblies.

2.
Inorg Chem ; 63(28): 12858-12869, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38934463

RESUMO

The impact that the anion and alkyl group has on the electronic structures and magnetic properties of four mononuclear Mn(III) complexes is explored in [Mn(salEen-Br)2]Y (salEen-Br = 2-{[2-(ethylamino)ethylimino]methyl}-4-Br-phenol; Y = ClO4- 1 and BF4-·1/3CH2Cl2 2) and [Mn(salBzen-Br)2]Y (salBzen-Br = 2-{[2-(benzylamino)ethylimino]methyl}-4-Br-phenol; Y = ClO4- 3 and BF4- 4). X-ray structures of [Mn(salEen-Br)2]ClO4·0.45C6H14 1-hexane, [Mn(salEen-Br)2]BF4·0.33CH2Cl2·0.15C6H14 2-dcm-hexane, and 3-4 reveal that they crystallize in ambient conditions in the monoclinic P21/c space group. Lowering the temperature, 2-dcm-hexane uniquely exhibits a structural phase transition toward a monoclinic P21/n crystal structure determined at 100 K with the unit cell trebling in size. Remarkably, at room temperature, the axially elongated Jahn-Teller axis in 2-dcm-hexane is poorly defined but becomes clearer at low temperature after the phase transition. Magnetic susceptibility measurements of 1-4 reveal that only 3 and 4 show slow relaxation of magnetization with Δeff/kB = 27.9 and 20.7 K, implying that the benzyl group is important for observing single-molecule magnet (SMM) properties. Theoretical calculations demonstrate that the alkyl group subtly influences the orbital levels and therefore very likely the observed SMM properties.

3.
Inorg Chem ; 63(15): 6980-6987, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38565220

RESUMO

There is growing focus on metal-free molecules and polymers owing to their potential applications in various energy and catalysis-related applications. Melem (2,5,8-triamino-s-heptazine, C6H6N10) has emerged as a metal-free material for solar-to-fuel conversion. However, its reactivity with metal ions or organic molecules has never been reported although it possesses multiple supramolecular interaction sites. In this work, we report on the synthesis of a novel metal-organic coordination framework (melem-Ag) by simply introducing Ag+ into the aqueous suspension of aggregated melem particles. Notably, as the reaction progresses, the melem disappears, and the morphology of the newly formed complex spontaneously evolves from nanofibers to single-crystalline blocks, which possess the same chemical structure, indicating that the morphology evolution is driven by Ostwald ripening. The structure of melem-Ag displays infinite nanocages of triangular pyramids consisting of melem molecules and Ag+, linked via Ag-N coordinate bonding and Ag-Ag argentophilic interactions. It is noteworthy that Ag+ is the only transition-metal cation that reacts with melem suspensions, even in the presence of other transition-metal cations (Co2+, Ni2+, Cu2+, and Zn2+). The coordination of Ag+ to melem results in metal-to-ligand charge transfer (MLCT), resulting in a quenched photoluminescence and enhanced light absorption. Exposing the melem-Ag crystals to UV light for varying time intervals results in the formation of colorful powders, which may be used for Ag-decorated photocatalysts.

4.
Dalton Trans ; 52(38): 13487-13491, 2023 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-37725064

RESUMO

Despite the use of achiral ligands, the vast majority of metallosupramolecular assemblies containing octahedral tris-bidentate metal centres show strong stereochemical communication between metal centres, generally resulting in homochiral assemblies even though they are statistically disfavoured. Here we show that when resolved stereocentres are attached to the central part of a quaterpyridine ligand, the stereochemical coupling from this centre is insufficient to disrupt the strong stereochemical communication between metal centres in both [M2L3] helicates and [M4L6] tetrahedra.

5.
Angew Chem Int Ed Engl ; 62(27): e202302229, 2023 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-37186056

RESUMO

Coordination cages can be used for enantio- and regioselective catalysis and for the selective sensing and separation of isomeric guest molecules. Here, stereoisomers of a family of coordination cages are resolved using ultra-high-resolution cyclic ion-mobility mass spectrometry (cIM-MS). The observed ratio of diastereomers is dependent on both the metal ion and counter ion. Moreover, the point groups can be assigned through complementary NMR experiments. This method enables the identification and interrogation of the individual isomers in complex mixtures of cages which cannot be performed in solution. Furthermore, these techniques allow the stability of individual isomers within the mixture to be probed, with the T-symmetric isomers in this case shown to be more robust than the C3 and S4 analogues.

6.
Small ; 19(25): e2207431, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36932939

RESUMO

Molecular crystals displaying elastic flexibility have important applications in the fields of optoelectronics and nanophotonic technologies. Understanding the mechanisms by which these materials bend is critical to the design of future materials incorporating these properties. Based on the known elastic properties of bis(acetylacetonato)copper(II), a series of 14 aliphatic derivatives are synthesized and crystallized. All those which grew in a needle morphology display noticeable elasticity, with 1D chains of π-stacked molecules parallel to the long metric length of the crystal a consistent crystallographic feature. Crystallographic mapping is used to measure the mechanism of elasticity at an atomic-scale. Symmetric derivatives with ethyl and propyl side chains are found to have different mechanisms of elasticity, which are further distinguished from the previously reported mechanism of bis(acetylacetonato)copper(II). While crystals of bis(acetylacetonato)copper(II) are known to bend elastically via a molecular rotation mechanism, the elasticity of the compounds presented is facilitated by expansion of their π-stacking interactions.

7.
Small ; 19(12): e2206169, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36587988

RESUMO

Organic materials are promising candidates for the development of efficient sensors for many medicinal and materials science applications. Single crystals of a small molecule, 4-trifluoromethyl phenyl isothiocyanate (4CFNCS), exhibit plastic deformation when bent, twisted, or coiled. Synchrotron micro-focus X-ray diffraction mapping of the bent region of the crystal confirms the mechanism of deformation. The crystals are incorporated into a flexible piezoresistive sensor using a composite constituting PEDOT: PSS/4CFNCS, which shows an impressive performance at high-pressure ranges (sensitivity 0.08 kPa-1 above 44 kPa).

8.
Angew Chem Int Ed Engl ; 61(45): e202212710, 2022 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-36102176

RESUMO

Coordination cages with well-defined cavities show great promise in the field of catalysis on account of their unique combination of molecular confinement effects and transition-metal redox chemistry. Here, three coordination cages are reduced from their native 16+ oxidation state to the 2+ state in the gas phase without observable structural degradation. Using this method, the reaction rate constants for each reduction step were determined, with no noticeable differences arising following either the incorporation of a C60 -fullerene guest or alteration of the cage chemical structure. The reactivity of highly reduced cage species toward molecular oxygen is "switched-on" after a threshold number of reduction steps, which is influenced by guest molecules and the structure of cage components. These new experimental approaches provide a unique window to explore the chemistry of highly-reduced cage species that can be modulated by altering their structures and encapsulated guest species.

9.
Chem Commun (Camb) ; 58(74): 10416-10419, 2022 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-36040425

RESUMO

The radical reactions of dimethylsulfoxide (DMSO) and tetrahydrothiophene-1-oxide (THTO) with reactive oxygen species (ROS) in the presence of a nitroxide radical scavenger have been evaluated both synthetically and in analytical practice. Fenton-mediated generation of oxygen-centred radicals produced several unusual products that reflect the fragmentation and ring-opening radical mechanisms of DMSO and THTO respectively. Addition of pollution-derived ROS to DMSO/THTO nitroxide solutions produced LC-MS detectable amounts of the same products isolated from the larger-scaled Fenton reactions. For air pollution analysis, these results highlight the complexity surrounding DMSO reactivity and fragmentation, and indicate that THTO produces simpler outcomes that should facilitate analysis of the processes involved.


Assuntos
Dimetil Sulfóxido , Material Particulado , Espécies Reativas de Oxigênio , Sulfóxidos , Tiofenos
10.
Dalton Trans ; 51(33): 12704-12708, 2022 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-35943089

RESUMO

The interplay of many factors influences the outcomes of self-assembly reactions. Using an acetylene-appended quaterpyridine ligand we show that both the size of the metal ion and the presence of steric repulsion between the acetylene groups result in the exclusive formation of [M2L3] helicates rather than a helicate/tetrahedron equilibrium.

11.
Inorg Chem ; 61(4): 2086-2092, 2022 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-35050601

RESUMO

Achieving reversible molecular crystal transformation between coordinate aggregates and hydrogen bonded assemblies has been a challenging task because coordinate bonds are generally much stronger than hydrogen bonds. Recently, we have reported the incorporation of silver ions into the cyanuric acid-melamine (CAM) network, resulting in the formation of a 1D coordination polymer (crystal 1) through forming the κ1N-Ag-κ2N coordination bonds. In this work, we find crystal 1 will undergo reversible transformation to hydrogen bonded coordinate units (crystal 2) through the breaking of coordinate chains and then the addition of CAM hydrogen bonding motifs into the framework. Crystal 2 presents a pseudohexagonal arrangement comprised of the κ1N-Ag-κ2N units connected by two sets of the triple hydrogen bonds, which extends two-dimensionally and stacks into a layer-structured crystal. Light was shed on the tautomerization of CA and M ligands associated with the crystal transformations using single crystal X-ray diffraction and infrared spectroscopy by analyzing the bond lengths and vibrations. We also highlight that photoluminescence can be a useful tool to probe the tautomer conversions of conjugated molecules. Furthermore, crystal 1 demonstrates high flexibility and can be bent over 180° and recover to its original shape after stress release. Crystal 2, on the contrary, is brittle and shows distinct mechanical anisotropy along different crystal orientations, as unveiled by nanoindentation measurements. The elastic modulus is well correlated with the chemical bonding strength along each orientation, and it is noteworthy that the contribution of the triple hydrogen bonds is comparable to that of the coordination bonds.

12.
Angew Chem Int Ed Engl ; 61(7): e202115555, 2022 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-34897921

RESUMO

Self-assembled coordination cages and metal-organic frameworks have relied extensively on symmetric ligands in their formation. Here we have prepared a relatively simple system employing an unsymmetric ligand that results in two distinct self-assembled structures, a [Fe2 L3 ]4+ helicate and a [Fe4 L6 ]8+ cage composed of 10 interconverting diastereomers and their enantiomers. We show that the steric profile of the ligand controls the complexity, thermodynamics and kinetics of interconversion of the system.

14.
Chem Soc Rev ; 50(21): 11725-11740, 2021 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-34528036

RESUMO

The discovery of molecular single crystals that display interesting elastic behaviour has generated excitement regarding their potential applications as it has upended the common perception of crystals as brittle objects. In order to design new functional materials based on molecular crystals, a comprehensive understanding of how these materials respond to deformation on a molecular-level is required. An introduction to the underlying mechanical theory and how it may be applied to single crystals is provided, along with a comprehensive discussion on how these mechanical properties can be characterised. While this field has already presented a large number of elastically flexible crystals, there is a lack of detailed mechanical characterisation data and some contention regarding the atomic-scale mechanism of elasticity. Due to the discrepancies and contradictions between theories proposed in the literature, it is not yet understood why some crystals are elastic while others shatter under applied force. To dispel ambiguity and guide future research, a set of criteria are proposed to define an elastically flexible crystal, so that these materials may find applications among future technologies.

15.
ACS Appl Mater Interfaces ; 13(34): 40441-40450, 2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-34423640

RESUMO

Organic luminogens have been widely used in optoelectronic devices, bioimaging, and sensing. Conventionally, the synthesis of organic luminogens requires sophisticated, multistep design, reaction, and isolation procedures. Herein, the products of the melt-phase condensation of benzoguanamine (BG; 2,4-diamino-6-phenyl-1,3,5-triazine) at 370-410 °C display interesting reaction-condition-dependent luminescence properties, including photoluminescence (PL) at a variety of wavelengths in the visible spectrum and quantum efficiencies (PLQE) of up to 58% in the powder form. With a simple and straightforward solvent washing procedure, the prominent blue luminescent component BG dimer was obtained in gram scale with >93% purity (96.5% purity after fractional sublimation). The BG dimer exhibited distinct aggregation-induced emission (AIE) properties. PL measurements indicate that the electronically excited state of the BG dimer undergoes efficient intramolecular nonradiative deactivation in room-temperature solution, leading to a significantly reduced PLQE (<0.1%) in solution. These nonradiative processes are substantially inhibited when the dimer existed in the form of crystals, solid aggregates in solution or being fixed in a rigid polymer film, resulting in a significant increase in the PLQE and lifetime. This work not only provided a new understanding for PL properties of self-condensation luminescent products but also represented an unconventional strategy for large-scale preparation of organic luminogens with high purity.

17.
J Am Chem Soc ; 143(19): 7292-7297, 2021 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-33955743

RESUMO

We introduce a highly efficient ligation system based on a visible light-induced rearrangement affording a thiophenol which rapidly undergoes thiol-Michael additions. Unlike conventional light-triggered thiol-ene/yne systems, which rely on the use of photocaged bases/nucleophiles, (organo)-photo catalysts, or radical photoinitiators, our system provides a light-induced reaction in the absence of any additives. The ligation is self-catalyzed via the pyridine mediated deprotonation of the photochemically generated thiophenol. Subsequently, the thiol-Michael reaction between the thiophenol anion and electron deficient alkynes/alkenes proceeds additive-free. Hereby, the underlying photoinduced rearrangement of o-thiopyrinidylbenzaldehyde (oTPyB) generating the free thiol is described for the first time. We studied the influence of various reactions conditions as well as solvents and substrates. We exemplify our findings in a polymer end group modification and obtained macromolecules with excellent end group fidelity.

18.
Inorg Chem ; 60(9): 6731-6738, 2021 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-33847127

RESUMO

A spin-crossover (SCO) active dinuclear Fe(II) triple helicate of the form [Fe2L3]4+ was combined with additional supramolecular components in order to manipulate the interhelical separation and steric congestion and to study the magneto-structural effects on the ensuing composite materials. A more separated array of SCO units produced more extensive spin-transitions, while a tightly arranged lattice environment stabilized the low-spin state. This study highlights the important interplay between crystal packing, intermolecualr interactions, and the magentic behavior of SCO materials.

19.
Chem Commun (Camb) ; 57(40): 4974-4975, 2021 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-33870973

RESUMO

A re-refinement of the published but chemically implausible, crystal structure of "Form III" of 4-bromophenyl 4-bromobenzoate shows that it is not a polymorph, but instead a co-crystal containing both 4-bromophenyl 4-bromobenzoate (≈25%) and likely 4-bromophenyl 4-nitrobenzoate (≈75%).

20.
Chem Commun (Camb) ; 57(40): 4918-4921, 2021 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-33870998

RESUMO

Nature builds simple molecules into highly complex assemblies, which are involved in all fundamental processes of life. Some of the most intriguing biological assemblies are those that can be precisely reconfigured to achieve different functions using the same building blocks. Understanding the reconfiguration of synthetic self-assembled systems will allow us to better understand the complexity of proteins and design useful artificial chemical systems. Here we have prepared a relatively simple system in which two distinct self-assembled structures, a [Fe2L3]4+ helicate and a [Fe4L6]8+ cage that are formed from the same precursors, coexist at equilibrium. We have measured the rates of interconversion of these two species and propose a mechanism for the transformation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...