Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 6(9): 6088-97, 2014 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-24571167

RESUMO

We report the physical properties of thiol-ene networks modified with thiourethane or urethane linkages, either along the main chain or as a branched component in the network, respectively. Because of the robust and orthogonal nature of thiol-isocyanate and thiol-ene reactions, these networks can be formed in a two-step, one-pot synthesis. Resultant networks were characterized using dynamic mechanical analysis, mechanical testing and other complementary techniques. It was found that incorporating (thio)urethanes into the networks increased Tg, but also increased strain at break and toughness while decreasing cross-link density. The changes in physical properties are discussed in terms of a proposed dual network morphology. These facile modifications to thiol-ene networks demonstrate how molecular-level, nanoscale changes can have a profound influence on the macroscale properties through hierarchical development of network morphology.

2.
ACS Appl Mater Interfaces ; 5(21): 11004-13, 2013 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-24175583

RESUMO

In this study, a series of thiol-ene networks having glass transition temperatures ranging from -30 to 60 °C were synthesized utilizing several multifunctional thiols and two trifunctional alkenes. Thermomechanical properties were determined using dynamic mechanical analysis, and impact properties were determined using pendulum impact and drop impact testing protocols. The impact behavior was found to directly correlate to the glass transition temperature, except when the temperature at which the impact event occurs overlaps with the range of temperatures corresponding to the viscoelastic dissipation regime of the polymer. Additionally, we discuss insight into the spatial limitations of energy dissipation for thiol-ene network polymers and establish a platform for predictability in similar systems.


Assuntos
Vidro/química , Polímeros/química , Compostos de Sulfidrila/química , Elasticidade , Estresse Mecânico , Temperatura , Temperatura de Transição
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...