Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Trends Biotechnol ; 34(8): 665-678, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27287927

RESUMO

Several recent micro- and nanotechnologies have provided novel methods for biological studies of adherent cells because the small features of these new biotools provide unique capabilities for accessing cells without the need for suspension or lysis. These novel approaches have enabled gentle but effective delivery of molecules into specific adhered target cells, with unprecedented spatial resolution. We review here recent progress in the development of these technologies with an emphasis on in vitro delivery into adherent cells utilizing mechanical penetration or electroporation. We discuss the major advantages and limitations of these approaches and propose possible strategies for improvements. Finally, we discuss the impact of these technologies on biological research concerning cell-specific temporal studies, for example non-destructive sampling and analysis of intracellular molecules.


Assuntos
Adesão Celular/fisiologia , Células Imobilizadas/fisiologia , Sistemas de Liberação de Medicamentos/instrumentação , Eletroporação/instrumentação , Micromanipulação/instrumentação , Nanotecnologia/instrumentação , Análise Serial de Tecidos/instrumentação , Separação Celular/instrumentação , Separação Celular/métodos , Células Imobilizadas/química , Eletroporação/métodos , Desenho de Equipamento , Micromanipulação/métodos , Miniaturização , Análise Serial de Tecidos/métodos
2.
Lab Chip ; 15(24): 4591-7, 2015 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-26511875

RESUMO

Sphere forming assays are routinely used for in vitro propagation and differentiation of stem cells. Because the stem cell clusters can become heterogeneous and polyclonal, they must first be dissociated into a single cell suspension for further clonal analysis or differentiation studies. The dissociated population is marred by the presence of doublets, triplets and semi-cleaved/intact clusters which makes identification and further analysis of differentiation pathways difficult. In this work, we use inertial microfluidics to separate the single cells and clusters in a population of chemically dissociated neurospheres. In contrast to previous microfluidic sorting technologies which operated at high flow rates, we implement the spiral microfluidic channel in a novel focusing regime that occurs at lower flow rates. In this regime, the curvature-induced Dean's force focuses the smaller, single cells towards the inner wall and the larger clusters towards the center. We further demonstrate that sorting in this low flow rate (and hence low shear stress) regime yields a high percentage (>90%) of viable cells and preserves multipotency by differentiating the sorted neural stem cell population into neurons and astrocytes. The modularity of the device allows easy integration with other lab-on-a-chip devices for upstream mechanical dissociation and downstream high-throughput clonal analysis, localized electroporation and sampling. Although demonstrated in the case of the neurosphere assay, the method is equally applicable to other sphere forming assays.


Assuntos
Separação Celular/instrumentação , Técnicas Analíticas Microfluídicas/instrumentação , Células-Tronco Neurais/citologia , Animais , Sobrevivência Celular , Células Cultivadas , Desenho de Equipamento , Humanos , Camundongos
3.
Small ; 11(20): 2386-91, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25641752

RESUMO

New techniques for single-cell analysis enable new discoveries in gene expression and systems biology. Time-dependent measurements on individual cells are necessary, yet the common single-cell analysis techniques used today require lysing the cell, suspending the cell, or long incubation times for transfection, thereby interfering with the ability to track an individual cell over time. Here a method for detecting mRNA expression in live single cells using molecular beacons that are transfected into single cells by means of nanofountain probe electroporation (NFP-E) is presented. Molecular beacons are oligonucleotides that emit fluorescence upon binding to an mRNA target, rendering them useful for spatial and temporal studies of live cells. The NFP-E is used to transfect a DNA-based beacon that detects glyceraldehyde 3-phosphate dehydrogenase and an RNA-based beacon that detects a sequence cloned in the green fluorescence protein mRNA. It is shown that imaging analysis of transfection and mRNA detection can be performed within seconds after electroporation and without disturbing adhered cells. In addition, it is shown that time-dependent detection of mRNA expression is feasible by transfecting the same single cell at different time points. This technique will be particularly useful for studies of cell differentiation, where several measurements of mRNA expression are required over time.


Assuntos
Eletroporação/métodos , Regulação da Expressão Gênica , Sondas Moleculares/química , Nanopartículas/química , Análise de Célula Única/métodos , Células HeLa , Humanos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Fatores de Tempo , Transfecção
4.
Lab Chip ; 14(23): 4486-95, 2014 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-25205561

RESUMO

New techniques to deliver nucleic acids and other molecules for gene editing and gene expression profiling, which can be performed with minimal perturbation to cell growth or differentiation, are essential for advancing biological research. Studying cells in their natural state, with temporal control, is particularly important for primary cells that are derived by differentiation from stem cells and are adherent, e.g., neurons. Existing high-throughput transfection methods either require cells to be in suspension or are highly toxic and limited to a single transfection per experiment. Here we present a microfluidic device that couples on-chip culture of adherent cells and transfection by localized electroporation. Integrated microchannels allow long-term cell culture on the device and repeated temporal transfection. The microfluidic device was validated by first performing electroporation of HeLa and HT1080 cells, with transfection efficiencies of ~95% for propidium iodide and up to 50% for plasmids. Application to primary cells was demonstrated by on-chip differentiation of neural stem cells and transfection of postmitotic neurons with a green fluorescent protein plasmid.


Assuntos
Diferenciação Celular/fisiologia , Eletroporação/instrumentação , Técnicas Analíticas Microfluídicas/instrumentação , Neurônios/citologia , Células-Tronco/citologia , Linhagem Celular , Desenho de Equipamento , Células HeLa , Humanos
5.
J Lab Autom ; 19(1): 100-9, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23897012

RESUMO

This brief report describes a novel tool for microfluidic patterning of biomolecules and delivery of molecules into cells. The microdevice is based on integration of nanofountain probe (NFP) chips with packaging that creates a closed system and enables operation in liquid. The packaged NFP can be easily coupled to a micro/nano manipulator or atomic force microscope for precise position and force control. We demonstrate here the functionality of the device for continuous direct-write parallel patterning on a surface in air and in liquid. Because of the small volume of the probes (~3 pL), we can achieve flow rates as low as 1 fL/s and have dispensed liquid drops with submicron to 10 µm diameters in a liquid environment. Furthermore, we demonstrate that this microdevice can be used for delivery of molecules into single cells by transient permeabilization of the cell membrane (i.e., electroporation). The significant advantage of NFP-based electroporation compared with bulk electroporation and other transfection techniques is that it allows for precise and targeted delivery while minimizing stress to the cell. We discuss the ongoing development of the tool toward automated operation and its potential as a multifunctional device for microarray applications and time-dependent single-cell studies.


Assuntos
Eletroporação/métodos , Microfluídica/métodos , Sondas Moleculares/metabolismo , Nanotecnologia/métodos , Análise de Célula Única/métodos , Células HeLa , Humanos
6.
Nano Lett ; 13(6): 2448-57, 2013 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-23650871

RESUMO

The ability to precisely deliver molecules into single cells is of great interest to biotechnology researchers for advancing applications in therapeutics, diagnostics, and drug delivery toward the promise of personalized medicine. The use of bulk electroporation techniques for cell transfection has increased significantly in the past decade, but the technique is nonspecific and requires high voltage, resulting in variable efficiency and low cell viability. We have developed a new tool for electroporation using nanofountain probe (NFP) technology, which can deliver molecules into cells in a manner that is highly efficient and gentler to cells than bulk electroporation or microinjection. Here we demonstrate NFP electroporation (NFP-E) of single HeLa cells within a population by transfecting them with fluorescently labeled dextran and imaging the cells to evaluate the transfection efficiency and cell viability. Our theoretical analysis of the mechanism of NFP-E reveals that application of the voltage creates a localized electric field between the NFP cantilever tip and the region of the cell membrane in contact with the tip. Therefore, NFP-E can deliver molecules to a target cell with minimal effect of the electric potential on the cell. Our experiments on HeLa cells confirm that NFP-E offers single cell selectivity, high transfection efficiency (>95%), qualitative dosage control, and very high viability (92%) of transfected cells.


Assuntos
Eletroporação , Nanotecnologia , Análise de Célula Única
7.
Inorg Chem ; 50(2): 418-20, 2011 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-21155580

RESUMO

Dinitrogen is reduced to ammonia by the molybdenum complex of L = [HIPTN3N](3-) [Mo; HIPT = 3,5-(2,4,6-iPr3C6H2)2C6H3]. The mechanism by which this occurs involves the stepwise addition of proton/electron pairs, but how the first pair converts MoN2 to MoN ═ NH remains uncertain. The first proton of reduction might bind either at Nß of N2 or at one of the three amido nitrogen (N(am)) ligands. Treatment of MoCO with [2,4,6-Me3C5H3N]BAr'4 [Ar' = 2,3-(CF3)2C6H3] in the absence of reductant generates HMoCO(+), whose electron paramagnetic resonance spectrum has greatly reduced g anisotropy relative to MoCO. (2)H Mims pulsed electron nuclear double-resonance spectroscopy of (2)HMoCO(+) shows a signal that simulations show to have a hyperfine tensor with an isotropic coupling, aiso((2)H) = -0.22 MHz, and a roughly dipolar anisotropic interaction, T((2)H) = [-0.48, -0.93, 1.42] MHz. The simulations show that the deuteron is bound to N(am), near the Mo equatorial plane, not along the normal, and at a distance of 2.6 Å from Mo, which is nearly identical with the (Nam)(2)H(+)-Mo distance predicted by density functional theory computations.


Assuntos
Complexos de Coordenação/química , Molibdênio/química , Nitrogênio/química , Catálise , Campos Magnéticos , Espectroscopia de Ressonância Magnética , Oxirredução , Prótons
8.
J Am Chem Soc ; 132(40): 14015-7, 2010 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-20860357

RESUMO

The formaldehyde-inhibited Mo(V) state of xanthine oxidase (I) has been studied for four decades, yet it has not proven possible to distinguish unequivocally among the several structures proposed for this form. The uniquely large isotropic hyperfine coupling for (13)C from CH(2)O led to the intriguing suggestion of a direct Mo-C bond for the active site of I. This suggestion was supported by the recent crystal structures of glycol- and glycerol-inhibited forms of aldehyde oxidoreductase, a member of the xanthine oxidase family. (1)H and (2)H ENDOR spectra of I(C(1,2)H(2)O) in H(2)O/D(2)O buffer now have unambiguously revealed that the active-site structure of I contains a CH(2)O adduct of Mo(V) in the form of a four-membered ring with S and O linking the C to Mo and have ruled out a direct Mo-C bond. Density functional theory computations are consistent with this conclusion. We interpret the large (13)C coupling as resulting from a "transannular hyperfine interaction".


Assuntos
Espectroscopia de Ressonância de Spin Eletrônica/métodos , Formaldeído/farmacologia , Xantina Oxidase/química , Domínio Catalítico , Conformação Proteica , Xantina Oxidase/antagonistas & inibidores
9.
Proc Natl Acad Sci U S A ; 107(35): 15335-9, 2010 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-20702768

RESUMO

Manganese is an essential transition metal that, among other functions, can act independently of proteins to either defend against or promote oxidative stress and disease. The majority of cellular manganese exists as low molecular-weight Mn(2+) complexes, and the balance between opposing "essential" and "toxic" roles is thought to be governed by the nature of the ligands coordinating Mn(2+). Until now, it has been impossible to determine manganese speciation within intact, viable cells, but we here report that this speciation can be probed through measurements of (1)H and (31)P electron-nuclear double resonance (ENDOR) signal intensities for intracellular Mn(2+). Application of this approach to yeast (Saccharomyces cerevisiae) cells, and two pairs of yeast mutants genetically engineered to enhance or suppress the accumulation of manganese or phosphates, supports an in vivo role for the orthophosphate complex of Mn(2+) in resistance to oxidative stress, thereby corroborating in vitro studies that demonstrated superoxide dismutase activity for this species.


Assuntos
Espectroscopia de Ressonância de Spin Eletrônica/métodos , Manganês/química , Estresse Oxidativo , Saccharomyces cerevisiae/química , Algoritmos , Homeostase , Cinética , Manganês/metabolismo , Modelos Químicos , Mutação , Oxigênio/metabolismo , Fosfatos/química , Fosfatos/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Espectrofotometria Atômica , Superóxido Dismutase/metabolismo
10.
J Am Chem Soc ; 132(25): 8645-56, 2010 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-20429559

RESUMO

The trigonally symmetric Mo(III) coordination compounds [HIPTN(3)N]MoL (L = N(2), CO, NH(3); [HIPTN(3)N]Mo = [(3,5-(2,4,6-i-Pr(3)C(6)H(2))(2)C(6)H(3)NCH(2)CH(2))(3)N]Mo) are low-spin d(3) (S = (1)/(2)) species that exhibit a doubly degenerate (2)E ground state susceptible to a Jahn-Teller (JT) distortion. The EPR spectra of all three complexes and their temperature and solvent dependences are interpreted within a formal "two-orbital" model that reflects the ground-state configuration, describes the vibronic interactions that lead to the JT distortions, and addresses whether these complexes exhibit static or dynamic JT distortions. The electronic and vibronic properties of these complexes are then analyzed through ab initio quantum chemical computations. It is not possible to interpret the spectroscopic properties of the orbitally degenerate [HIPTN(3)N]MoL with DFT methods, so we have resorted to multi-reference wavefunction approaches, the entry level of which is the complete active space self-consistent field (CASSCF) method. Overall, the experimental and computational studies provide new insights into the role of trigonal coordination, as enforced by the [HIPTN(3)N](3-) ligand, in activating the Mo ion for the binding and reduction of N(2).


Assuntos
Espectroscopia de Ressonância de Spin Eletrônica/métodos , Molibdênio/química , Compostos Organometálicos/química , Teoria Quântica , Ligantes , Magnetismo , Modelos Moleculares , Conformação Molecular , Nitrogênio/química , Oxirredução , Solventes/química , Temperatura , Vibração
11.
J Am Chem Soc ; 130(14): 4628-36, 2008 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-18341333

RESUMO

Enzymes belonging to the dimethylsulfoxide reductase (DMSOR) family of pyranopterin Mo enzymes have a unique active-site geometry in the reduced form that lacks a terminal oxo ligand, unlike the reduced active sites of other pyranopterin Mo enzymes. Furthermore, the DMSOR family is characterized by the coordination of two pyranopterin-ene-1,2-dithiolate ligands in their active sites, which is distinctive among the other pyranopterin Mo enzymes but analogous to all of the currently known tungsten-containing enzymes. Electronic absorption, resonance Raman, and ground- and excited-state density functional calculations of symmetrized analogues of the reduced DMSOR active site ([NEt4][Mo(IV)(QAd)(S2C2Me2)2] where Ad = 2-adamantyl; Q = O, S, Se) have allowed for a detailed description of Mo-bisdithiolene electronic structure in the absence of a strong-field oxo ligand. The electronic absorption spectra are dominated by dithiolene S --> Mo charge-transfer transitions, and the totally symmetric Mo-S Raman stretch is observed at approximately 400 cm(-1) for all three complexes. These data indicate that the Mo-bisdithiolene bonding scheme in high-symmetry [Mo(QAd)(S2C2Me2)2]- complexes is not strongly perturbed by the apical QAd- ligands, but instead, the dithiolene ligands define the t(2g) ligand field splitting. The effects of conserved geometric distortions observed in DMSOR, relative to these high-symmetry models, were explored by spectroscopically calibrated bonding calculations, and the results are discussed within the context of electronic structure contributions to ground-state destabilization and transition-state stabilization. The specific electronic structure tuning of the endogenous amino acid ligation on the mechanism of DMSOR is also discussed.


Assuntos
Proteínas Ferro-Enxofre/química , Oxirredutases/química , Sítios de Ligação , Proteínas Ferro-Enxofre/metabolismo , Modelos Moleculares , Oxirredução , Oxirredutases/metabolismo , Teoria Quântica , Espectrofotometria Ultravioleta , Análise Espectral Raman
12.
J Am Chem Soc ; 130(2): 546-55, 2008 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-18092774

RESUMO

Molybdenum-dependent nitrogenase binds and reduces N2 at the [Fe7, Mo, S9, X, homocitrate] iron-molybdenum cofactor (FeMo-co). Kinetic and spectroscopic studies of nitrogenase variants indicate that a single Fe-S face is the most likely binding site. Recently, substantial progress has been made in determining the structures of nitrogenase intermediates formed during alkyne and N2 reduction through use of ENDOR spectroscopy. However, constraints derived from ENDOR studies of biomimetic complexes with known structure would powerfully contribute in turning experimentally derived ENDOR parameters into structures for species bound to FeMo-co during N2 reduction. The first report of a paramagnetic Fe-S compound that binds reduced forms of N2 involved Fe complexes stabilized by a bulky beta-diketiminate ligand (Vela, J.; Stoian, S.; Flaschenriem, C. J.; Münck, E.; Holland, P. L. J. Am. Chem. Soc. 2004, 126, 4522-4523). Treatment of a sulfidodiiron(II) complex with phenylhydrazine gave an isolable mixed-valence FeII-Fe(III) complex with a bridging phenylhydrazido (PhNNH2) ligand, and this species now has been characterized by ENDOR spectroscopy. Using both 15N, 2H labeled and unlabeled forms of the hydrazido ligand, the hyperfine and quadrupole parameters of the -N-NH2 moiety have been derived by a procedure that incorporates the (near-) mirror symmetry of the complex and involves a strategy which combines experiment with semiempirical and DFT computations. The results support the use of DFT computations in identifying nitrogenous species bound to FeMo-co of nitrogenase turnover intermediates and indicate that 14N quadrupole parameters from nitrogenase intermediates will provide a strong indication of the nature of the bound nitrogenous species. Comparison of the large 14N hyperfine couplings measured here with that of a hydrazine-derived species bound to FeMo-co of a trapped nitrogenase intermediate suggests that the ion(s) are not high spin and/or that the spin coupling coefficients of the coordinating cofactor iron ion(s) in the intermediate are exceptionally small.


Assuntos
Espectroscopia de Ressonância de Spin Eletrônica , Compostos de Ferro/química , Molibdoferredoxina/química , Nitrogenase/química
14.
J Am Chem Soc ; 128(51): 16566-78, 2006 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-17177406

RESUMO

Superoxide reductase (SOR) and P450 enzymes contain similar [Fe(N)4(SCys)] active sites and, although they catalyze very different reactions, are proposed to involve analogous low-spin (hydro)peroxo-Fe(III) intermediates in their respective mechanisms that can be modeled by cyanide binding. The equatorial FeN4 ligation by four histidine ligands in CN-SOR and the heme in CN-P450cam is directly compared by 14N ENDOR, while the axial Fe-CN and Fe-S bonding is probed by 13C ENDOR of the cyanide ligand and 1Hbeta ENDOR measurements to determine the spin density delocalization onto the cysteine sulfur. There are small, but notable, differences in the bonding between Fe(III) and its ligands in the two enzymes. The ENDOR measurements are complemented by DFT computations that support the semiempirical equation used to compute spin densities on metal-coordinated cysteinyl and shed light on bonding changes as the Fe-C-N linkage bends. They further indicate that H bonds to the cysteinyl thiolate sulfur ligand reduce the spin density on the sulfur in both active sites to a degree that exceeds the difference induced by the alternative sets of "in-plane" nitrogen ligands.


Assuntos
Cânfora 5-Mono-Oxigenase/química , Elétrons , Compostos Férricos/química , Modelos Químicos , Oxirredutases/química , Sítios de Ligação , Cristalografia por Raios X , Espectroscopia de Ressonância de Spin Eletrônica/métodos , Ligação de Hidrogênio , Modelos Moleculares , Conformação Molecular , Sensibilidade e Especificidade , Estereoisomerismo
15.
Inorg Chem ; 44(23): 8216-22, 2005 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-16270958

RESUMO

The effect of sterically encumbering ligands on the electronic structure of oxomolybdenum tetrathiolate complexes was determined using a combination of electronic absorption and magnetic circular dichroism spectroscopies, complimented by DFT bonding calculations, to understand geometric and electronic structure contributions to reduction potentials. These complexes are rudimentary models for a redox-active metalloenzyme active site in a protein matrix and allow for detailed spectroscopic probing of specific oxomolybdenum-thiolate interactions that are directly relevant to Mo-S(cysteine) bonding in pyranopterin molybdenum enzymes. Data are presented for three para-substituted oxomolybdenum tetrathiolate complexes ([PPh4][MoO(p-SPhCONHCH3)4], [PPh4][MoO(p-SPhCONHC(CH2O(CH2)2CN)3)4], and [PPh4][MoO(p-SPhCONHC(CH2O(CH2)2COOCH2CH3)3)4]). The Mo(V/IV) reduction potentials of the complexes in DMF are -1213, -1251, and -1247 mV, respectively. The remarkably similar electronic absorption and magnetic circular dichroism spectra of these complexes establish that the observed reduction potential differences are not a result of significant changes in the electronic structure of the [MoOS4]- cores as a function of the larger ligand size. We provide evidence that these reduction potential differences result from the driving force for a substantial reorganization of the O-Mo-S-C dihedral angle upon reduction, which decreases electron donation from the thiolate sulfurs to the reduced molybdenum center. The energy barrier to favorable O-Mo-S-C geometries results in a reorganizational energy increase, relative to [MoO(SPh)4](-/2-), that correlates with ligand size. The inherent flexible nature of oxomolybdenum-thiolate bonds indicate that thiolate ligand geometry, which controls Mo-S covalency, could affect the redox processes of monooxomolybdenum centers in pyranopterin molybdenum enzymes.


Assuntos
Molibdênio/química , Compostos Organometálicos/química , Compostos de Sulfidrila/química , Dicroísmo Circular , Proteínas Ferro-Enxofre/química , Modelos Moleculares , Conformação Molecular , Oxirredução , Oxirredutases/química , Teoria Quântica , Espectrofotometria Infravermelho , Espectrofotometria Ultravioleta , Sulfito Oxidase/química , Xantina Oxidase
16.
Inorg Chem ; 43(5): 1625-37, 2004 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-14989655

RESUMO

The electronic structure of cis,trans-(L-N(2)S(2))MoO(X) (where L-N(2)S(2) = N,N'-dimethyl-N,N'-bis(2-mercaptophenyl)ethylenediamine and X = Cl, SCH(2)C(6)H(5), SC(6)H(4)-OCH(3), or SC(6)H(4)CF(3)) has been probed by electronic absorption, magnetic circular dichroism, and resonance Raman spectroscopies to determine the nature of oxomolybdenum-thiolate bonding in complexes possessing three equatorial sulfur ligands. One of the phenyl mercaptide sulfur donors of the tetradentate L-N(2)S(2) chelating ligand, denoted S(180), coordinates to molybdenum in the equatorial plane such that the OMo-S(180)-C(phenyl) dihedral angle is approximately 180 degrees, resulting in a highly covalent pi-bonding interaction between an S(180) p orbital and the molybdenum d(xy) orbital. This highly covalent bonding scheme is the origin of an intense low-energy S --> Mo d(xy) bonding-to-antibonding LMCT transition (E(max) approximately 16000 cm(-)(1), epsilon approximately 4000 M(-)(1) cm(-)(1)). Spectroscopically calibrated bonding calculations performed at the DFT level of theory reveal that S(180) contributes approximately 22% to the HOMO, which is predominantly a pi antibonding molecular orbital between Mo d(xy) and the S(180) p orbital oriented in the same plane. The second sulfur donor of the L-N(2)S(2) ligand is essentially nonbonding with Mo d(xy) due to an OMo-S-C(phenyl) dihedral angle of approximately 90 degrees. Because the formal Mo d(xy) orbital is the electroactive or redox orbital, these Mo d(xy)-S 3p interactions are important with respect to defining key covalency contributions to the reduction potential in monooxomolybdenum thiolates, including the one- and two-electron reduced forms of sulfite oxidase. Interestingly, the highly covalent Mo-S(180) pi bonding interaction observed in these complexes is analogous to the well-known Cu-S(Cys) pi bond in type 1 blue copper proteins, which display electronic absorption and resonance Raman spectra that are remarkably similar to these monooxomolybdenum thiolate complexes. Finally, the presence of a covalent Mo-S pi interaction oriented orthogonal to the MOO bond is discussed with respect to electron-transfer regeneration in sulfite oxidase and Mo=S(sulfido) bonding in xanthine oxidase.


Assuntos
Molibdênio/química , Oxirredutases atuantes sobre Doadores de Grupo Enxofre/química , Compostos de Sulfidrila/química , Enxofre/química , Xantina Oxidase/química , Sítios de Ligação , Dicroísmo Circular , Ligantes , Conformação Molecular , Estrutura Molecular , Compostos Organometálicos/química , Análise Espectral Raman
17.
J Am Chem Soc ; 124(31): 9006-7, 2002 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-12148977

RESUMO

A number of both experimental and computational studies have recently been reported for symmetric, six-coordinate dioxomolybdenum(VI) complexes as models of the fully oxidized form of the molybdopterin enzyme sulfite oxidase (SO). Such studies have suggested that the two terminal oxo donors in SO are electronically equivalent. However, the consensus structure of the catalytically competent Mo(VI) active site in SO is five-coordinate square pyramidal, possessing two terminal oxo donors, an ene-1,2-dithiolate chelate and a cysteine sulfur donor ligand. Computational studies at the density functional level of theory have been performed on a minimal model of the SO active site, [Mo(VI)O2(S2C2Me2)(SCH3)]-, in C1 symmetry to evaluate the composition of the LUMO, which is the putative electron acceptor orbital in the oxygen atom transfer (OAT) reaction with the sulfite substrate. The LUMO in this model is principally composed of a Mo dxy - ppi* interaction between the Mo and the equatorial oxygen (Oeq), while the axial oxygen (Oax) possesses no contribution to this orbital. In fact, the LUMO+1 orbital which possesses a substantial amount of Oax character lies nearly 1 eV higher in energy than the LUMO. It has also been suggested that changes in the Oax-Mo-Sthiolate-C torsion angle during the course of enzyme catalysis may aid in selection of Oeq for OAT. Calculations were performed in which this torsion angle was varied by 20 degrees through 360 degrees . These calculations demonstrate that the Mo dxy -Oeq ppi* interaction, and therefore the Oeq atom character, always dominates the LUMO. The results presented here suggest that oxygen atom selection and activation are a direct function of the low-symmetry structure of the oxidized SO active site and provide a role for the ene-1,2-dithiolate in promoting OAT reactivity through its kinetic trans effect on the equatorial oxo donor.


Assuntos
Molibdênio/química , Oxirredutases atuantes sobre Doadores de Grupo Enxofre/química , Oxigênio/química , Sítios de Ligação , Humanos , Indicadores e Reagentes , Modelos Moleculares , Oxirredutases atuantes sobre Doadores de Grupo Enxofre/genética , Oxirredutases atuantes sobre Doadores de Grupo Enxofre/metabolismo , Conformação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...