Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Cell Physiol ; 176(1): 110-9, 1998 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-9618151

RESUMO

The sialomucin complex (SMC), originally isolated as a heterodimeric glycoprotein complex from membranes of ascites sublines of a highly metastatic mammary adenocarcinoma, consists of a high Mr mucin subunit (ASGP-1, ascites sialoglycoprotein) and a transmembrane subunit (ASGP-2) with two epidermal growth factor-like domains. SMC has been characterized in the mammary gland, where it is present in both membrane and nonmembrane (soluble) forms, the latter lacking its transmembrane domain. SMC in the mammary gland is observed during pregnancy and lactation, but not in the virgin gland, and is regulated by a posttranscriptional mechanism. Both membrane and nonmembrane forms of SMC are found in rat uterus, also as a complex of ASGP-1 and ASGP-2. Immunocytochemical analyses indicate that the primary site of expression is at the luminal surface of the endometrium. Approximately 40% of the SMC, corresponding to the nonmembrane fraction, is removed by rinsing uterine preparations with saline, indicating that the soluble form is adsorbed loosely to the cell surface. In contrast to mammary gland, SMC is most highly expressed in the virgin animal, and its expression varies during the estrous cycle with the steady state level of transcript. The complex is present in a location consistent with steric inhibition of blastocyst implantation and is abruptly lost at the beginning of the period of receptivity for implantation. Expression of SMC in the uterus is regulated by estrogen and progesterone and is inversely correlated with receptivity. Both implantation and loss of SMC expression can be blocked with RU486. We propose that the down-regulation of SMC and its loss from the apical surface of the rat uterine lining contribute to the generation of the receptive state for uterine implantation. Furthermore, the presence of both membrane and soluble SMC at the luminal surface of the endometrium may provide a model for its proposed protective function in other accessible and vulnerable epithelia.


Assuntos
Mucinas/metabolismo , Esteroides/farmacologia , Útero/efeitos dos fármacos , Animais , Implantação do Embrião/efeitos dos fármacos , Estradiol/farmacologia , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Immunoblotting , Imuno-Histoquímica , Glicoproteínas de Membrana/metabolismo , Mifepristona/farmacologia , Mucina-4 , Progesterona/farmacologia , Ratos , Sialoglicoproteínas/química , Sialomucinas , Útero/fisiologia
2.
Biochem J ; 330 ( Pt 2): 737-44, 1998 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-9480884

RESUMO

The pulmonary epithelium has a multitude of specialized functions, which depend on regulated growth and differentiation of several cell types. One such function is the synthesis and secretion of mucins, which offer the epithelium protection from and a means for removal of noxious environmental factors. Sialomucin complex (SMC) is a heterodimeric glycoprotein consisting of a mucin subunit (ASGP-1, ascites sialoglycoprotein-1) and a transmembrane protein (ASGP-2) with two epidermal-growth-factor-like domains. SMC was originally discovered in a highly metastatic rat mammary adenocarcinoma and has been implicated in metastasis and in the protection of the tumour cells from natural killer cells. It can also act as a ligand for the receptor tyrosine kinase 185(neu), suggesting that it is bifunctional as well as heterodimeric. SMC is expressed on the epithelium of rat conducting airways, with the highest levels occurring in the proximal trachea and progressively decreasing into the bronchioles. Airway SMC consists of two forms: a soluble form that lacks the C-terminal cytoplasmic and transmembrane domains and accounts for about 70% of the total, and a membrane-associated form that has the C-terminal domains. Immunocytochemical analyses show that SMC is predominantly present on the apical surfaces of the airway epithelium, but not in goblet cells. Soluble form can be removed from the trachea by rinsing, suggesting that a fraction of the protein is adsorbed to the apical surface. Based on these results, we propose a protective mechanism in which membrane and soluble forms of SMC are produced by airway luminal epithelial cells to provide a cell-associated epithelial glycoprotein barrier that also serves as an interface with flowing mucus. In support of this mechanism, we demonstrated secretion of soluble SMC by primary cultures of tracheal epithelial cells. This model suggests that SMC is a critical element in the protective barrier of the airway epithelium.


Assuntos
Mucinas/fisiologia , Fenômenos Fisiológicos Respiratórios , Sialoglicoproteínas/fisiologia , Animais , Células Cultivadas , Células Epiteliais/química , Células Epiteliais/fisiologia , Feminino , Modelos Biológicos , Mucina-4 , Ratos , Ratos Endogâmicos F344 , Sistema Respiratório/química , Sistema Respiratório/citologia , Sialomucinas
3.
J Biol Chem ; 271(52): 33476-85, 1996 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-8969211

RESUMO

Ascites 13762 rat mammary adenocarcinoma cells express abundantly on their cell surfaces a heterodimeric glycoprotein complex composed of a sialomucin ascites sialoglycoprotein (ASGP)-1 and a transmembrane subunit ASGP-2. The latter, which contains two epidermal growth factor-like domains, binds the receptor tyrosine kinase p185(neu), suggesting that the complex is bifunctional as well as heterodimeric. Immunoblot analyses using monoclonal antibodies prepared against the complex demonstrate high levels of expression in rat lactating mammary gland and colon. Immunolocalization studies with anti-ASGP-2 indicate that ASGP-2 is present in these two tissues in the apical regions of secretory epithelial cells. Both mammary gland and colon contain a soluble, secretable form of ASGP-2, which is not found in the ascites cells; milk and mammary gland also have the membrane form. Immunoblot analyses using a COOH-terminal-specific polyclonal antibody indicate that the soluble form of ASGP-2 is missing its COOH-terminal domains. Both the soluble and membrane forms of ASGP-2 are similar to the membrane-associated form from the 13762 adenocarcinoma with respect to Mr, antigenicity, and association with ASGP-1. The presence of ASGP-1 in milk suggests that it is a candidate for the uncharacterized high Mr milk mucin, MUCX. ASGP-2 expression is up-regulated in mammary gland during pregnancy, because it is undetectable in virgin and early pregnant rats but abundant in the gland from late pregnant and lactating animals. However, compared with the lactating mammary gland, the 13762 ascites cells overexpress ASGP-2 by more than 100-fold, which may contribute to their malignancy. These combined results indicate that sialomucin complex is a unique secreted product in the mammary gland and colon, whose behavior is different from that in the mammary ascites tumors, and which may play important roles in mammary and intestinal physiology.


Assuntos
Colo/metabolismo , Glândulas Mamárias Animais/metabolismo , Mucinas/química , Animais , Anticorpos Monoclonais/química , Mapeamento de Epitopos , Feminino , Hibridomas/química , Lactação , Mucina-4 , Reação em Cadeia da Polimerase , Gravidez , Conformação Proteica , Ratos , Sialoglicoproteínas/metabolismo , Sialomucinas , Frações Subcelulares/química , Células Tumorais Cultivadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...