Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Appl Clin Med Phys ; 25(2): e14159, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37735808

RESUMO

PURPOSE: Radiotherapy delivered at ultra-high-dose-rates (≥40 Gy/s), that is, FLASH, has the potential to effectively widen the therapeutic window and considerably improve the care of cancer patients. The underlying mechanism of the FLASH effect is not well understood, and commercial systems capable of delivering such dose rates are scarce. The purpose of this study was to perform the initial acceptance and commissioning tests of an electron FLASH research product for preclinical studies. METHODS: A linear accelerator (Clinac 23EX) was modified to include a non-clinical FLASH research extension (the Clinac-FLEX system) by Varian, a Siemens Healthineers company (Palo Alto, CA) capable of delivering a 16 MeV electron beam with FLASH and conventional dose rates. The acceptance, commissioning, and dosimetric characterization of the FLEX system was performed using radiochromic film, optically stimulated luminescent dosimeters, and a plane-parallel ionization chamber. A radiation survey was conducted for which the shielding of the pre-existing vault was deemed sufficient. RESULTS: The Clinac-FLEX system is capable of delivering a 16 MeV electron FLASH beam of approximately 1 Gy/pulse at isocenter and reached a maximum dose rate >3.8 Gy/pulse near the upper accessory mount on the linac gantry. The percent depth dose curves of the 16 MeV FLASH and conventional modes for the 10 × 10 cm2 applicator agreed within 0.5 mm at a range of 50% of the maximum dose. Their respective profiles agreed well in terms of flatness but deviated for field sizes >10 × 10 cm2 . The output stability of the FLASH system exhibited a dose deviation of <1%. Preliminary cell studies showed that the FLASH dose rate (180 Gy/s) had much less impact on the cell morphology of 76N breast normal cells compared to the non-FLASH dose rate (18 Gy/s), which induced large-size cells. CONCLUSION: Our studies characterized the non-clinical Clinac-FLEX system as a viable solution to conduct FLASH research that could substantially increase access to ultra-high-dose-rate capabilities for scientists.


Assuntos
Elétrons , Radiometria , Humanos , Dosagem Radioterapêutica , Aceleradores de Partículas , Dosímetros de Radiação
2.
Radiother Oncol ; 187: 109822, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37516362

RESUMO

BACKGROUND AND PURPOSE: Radiotherapy delivery with ultra-high dose rates (UHDR) has consistently produced normal tissue sparing while maintaining efficacy for tumour control in preclinical studies, known as the FLASH effect. Modified clinical electron linacs have been used for pre-clinical studies at reduced source-surface distance (SSD) and novel intra-operative devices are becoming available. In this context, we modified a clinical linac to deliver 16 MeV UHDR electron beams with an isocentric setup. MATERIALS AND METHODS: The first Varian TrueBeam (SN 1001) was clinically operative between 2009-2022, it was then decommissioned and converted into a research platform. The 18 MeV electron beam was converted into the experimental 16 MeV UHDR. Modifications were performed by Varian and included a software patch, thinner scattering foil and beam tuning. The dose rate, beam characteristics and reproducibility were measured with electron applicators at SSD = 100 cm. RESULTS: The dose per pulse at isocenter was up to 1.28 Gy/pulse, corresponding to average and instantaneous dose rates up to 256 Gy/s and 3⋅105 Gy/s, respectively. Beam characteristics were equivalent between 16 MeV UHDR and conventional for field sizes up to 10x10cm2 and an overall beam reproducibility within ± 2.5% was measured. CONCLUSIONS: We report on the first technical conversion of a Varian TrueBeam to produce 16 MeV UHDR electron beams. This research platform will allow isocenter experiments and deliveries with conventional setups up to field sizes of 10x10 cm2 within a hospital environment, reducing the gap between preclinical and clinical electron FLASH investigations.


Assuntos
Elétrons , Aceleradores de Partículas , Humanos , Dosagem Radioterapêutica , Reprodutibilidade dos Testes , Radiometria
3.
Opt Lett ; 44(6): 1520-1523, 2019 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-30874691

RESUMO

We report on the efficacy of a novel design for dielectric laser accelerators by adding a distributed Bragg reflector (DBR) to a dual pillar grating accelerating structure. This mimics a double-sided laser illumination, resulting in an enhanced longitudinal electric field while reducing the deflecting transverse effects when compared to single-sided illumination. We improve the coupling efficiency of the incident electric field into the accelerating mode by 57%. The 12 µm long structures accelerate sub-relativistic 28 keV electrons with gradients of up to 200 MeV/m in theory and 133 MeV/m in practice. This Letter shows how lithographically produced nano-structures help to make novel laser accelerators more efficient.

4.
Phys Rev Lett ; 123(26): 264803, 2019 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-31951447

RESUMO

Dielectric laser acceleration is a versatile scheme to accelerate and control electrons with the help of femtosecond laser pulses in nanophotonic structures. We demonstrate here the generation of a train of electron pulses with individual pulse durations as short as 270±80 attoseconds (FWHM), measured in an indirect fashion, based on two subsequent dielectric laser interaction regions connected by a free-space electron drift section, all on a single photonic chip. In the first interaction region (the modulator), an energy modulation is imprinted on the electron pulse. During free propagation, this energy modulation evolves into a charge density modulation, which we probe in the second interaction region (the analyzer). These results will lead to new ways of probing ultrafast dynamics in matter and are essential for future laser-based particle accelerators on a photonic chip.

5.
Opt Lett ; 41(15): 3435-8, 2016 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-27472587

RESUMO

We demonstrate an experimental technique for both transverse and longitudinal characterization of bunched femtosecond free electron beams. The operation principle is based on monitoring of the current of electrons that obtained an energy gain during the interaction with the synchronized optical near-field wave excited by femtosecond laser pulses. The synchronous accelerating/decelerating fields confined to the surface of a silicon nanostructure are characterized using a highly focused sub-relativistic electron beam. Here the transverse spatial resolution of 450 nm and femtosecond temporal resolution of 480 fs (sub-optical-cycle temporal regime is briefly discussed) achievable by this technique are demonstrated.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...