Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mycologia ; 112(6): 1104-1137, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32552515

RESUMO

Ambrosia beetles farm fungal cultivars (ambrosia fungi) and carry propagules of the fungal mutualists in storage organs called mycangia, which occur in various body parts and vary greatly in size and complexity. The evolution of ambrosia fungi is closely tied to the evolution and development of the mycangia that carry them. The understudied ambrosia beetle tribe Xyloterini included lineages with uncharacterized ambrosia fungi and mycangia, which presented an opportunity to test whether developments of different mycangium types in a single ambrosia beetle lineage correspond with concomitant diversity in their fungal mutualists. We collected representatives of all three Xyloterini genera (Trypodendron, Indocryphalus, and Xyloterinus politus) and characterized their ambrosia fungi in pure culture and by DNA sequencing. The prothoracic mycangia of seven Trypodendron species all yielded Phialophoropsis (Microascales) ambrosia fungi, including three new species, although these relationships were not all species specific. Indocryphalus mycangia are characterized for the first time in the Asian I. pubipennis. They comprise triangular prothoracic cavities substantially smaller than those of Trypodendron and unexpectedly carry an undescribed species of Toshionella (Microascales), which are otherwise ambrosia fungi of Asian Scolytoplatypus (Scolytoplatypodini). Xyloterinus politus has two different mycangia, each with a different ambrosia fungus: Raffaelea cf. canadensis RNC5 (Ophiostomatales) in oral mycangia of both sexes and Kaarikia abrahamsonii (Sordariomycetes, genus incertae sedis with affinity for Distoseptisporaceae), a new genus and species unrelated to other known ambrosia fungi, in shallow prothoracic mycangia of females. In addition to their highly adapted mycangial mutualists, Trypodendron and X. politus harbor a surprising diversity of facultative symbionts in their galleries, including Raffaelea. A diversity of ambrosia fungi and mycangia suggest multiple ancestral cultivar captures or switches in the history of tribe Xyloterini, each associated with unique adaptations in mycangium anatomy. This further supports the theory that developments of novel mycangium types are critical events in the evolution of ambrosia beetles and their coadapted fungal mutualists.


Assuntos
Besouros/microbiologia , Fungos/classificação , Fungos/genética , Simbiose , Animais , Besouros/fisiologia , Feminino , Fungos/isolamento & purificação , Masculino , Filogenia , Análise de Sequência de DNA , Especificidade da Espécie
2.
Fungal Biol ; 123(2): 170-182, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30709522

RESUMO

Ceratocystis fimbriata Ellis & Halsted recently was recorded causing seed and seedling blight on Carapa guianensis Aubl. (andiroba), a tree species native to the Amazon Rainforest and prized for its valuable timber and medicinal seed oil. C. fimbriata more commonly causes wilt type diseases in woody hosts, especially on non-native host trees. However, on andiroba the disease occurs on seedlings and seeds, affecting the species regeneration. We studied 73 isolates of C. fimbriata on andiroba from three regions of the Amazon Basin to see if they represented natural or introduced populations. Analysis of ITS rDNA sequences and phylogenetic analysis of mating type genes revealed new haplotypes of C. fimbriata from the Latin American Clade that were closely related to other Brazilian populations of the fungus. In mating experiments, andiroba isolates were inter-fertile with tester strains of C. fimbriata from Brazil and elsewhere, confirming that they belong to a single biological species. Using microsatellite markers, 14 genotypes and populations with intermediate levels of genetic variability were found, suggesting that the fungus is indigenous to the Amazon Basin. Inoculation tests indicated that the andiroba isolates are host-specialized on andiroba, supporting the proposition of the special form C. fimbriata f. sp. carapa.


Assuntos
DNA Fúngico/genética , Meliaceae/microbiologia , Doenças das Plantas/microbiologia , Plântula/microbiologia , Amazona , Animais , Ascomicetos/genética , Brasil , Variação Genética , Repetições de Microssatélites , Floresta Úmida
3.
Plant Dis ; 100(11): 2266-2274, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30682921

RESUMO

Chinese isolates of Ceratocystis fimbriata from sweet potato (Ipomoea batatas) and pomegranate (Punica granatum) were genetically compared with a worldwide collection of isolates from a variety of hosts. Isolates from black-rotted storage roots of sweet potato in China, Japan, Australasia, and the United States had identical internal transcribed spacer (ITS) ribosomal DNA (rDNA) sequences and only minor variation in microsatellite alleles. Sequences of their mating type genes were most similar to those of isolates from various hosts in Ecuador, a center of diversity for sweet potato. Isolates from Colocasia esculenta (taro) and pomegranate from Yunnan and Sichuan had only one ITS rDNA sequence (haplotype ITS5). This haplotype, sequences of mating type genes, and microsatellite alleles linked these isolates to isolates from Eucalyptus stumps in South China and diseased Eucalyptus trees in Brazil, supporting the hypothesis that the pomegranate population originated from Brazil via cuttings of Eucalyptus. Isolates from sweet potato and pomegranate in China were interfertile with tester strains of C. fimbriata, confirming that the causes of the two epidemics in China belong to a single biological species. However, other isolates from Eucalyptus stumps were intersterile with the tester strains and had ITS rDNA sequences typical of the Asian species, C. cercfabiensis.

4.
Fungal Biol ; 119(11): 1075-1092, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26466881

RESUMO

The genus Ambrosiella accommodates species of Ceratocystidaceae (Microascales) that are obligate, mutualistic symbionts of ambrosia beetles, but the genus appears to be polyphyletic and more diverse than previously recognized. In addition to Ambrosiella xylebori, Ambrosiella hartigii, Ambrosiella beaveri, and Ambrosiella roeperi, three new species of Ambrosiella are described from the ambrosia beetle tribe Xyleborini: Ambrosiella nakashimae sp. nov. from Xylosandrus amputatus, Ambrosiella batrae sp. nov. from Anisandrus sayi, and Ambrosiella grosmanniae sp. nov. from Xylosandrus germanus. The genus Meredithiella gen. nov. is created for symbionts of the tribe Corthylini, based on Meredithiella norrisii sp. nov. from Corthylus punctatissimus. The genus Phialophoropsis is resurrected to accommodate associates of the Xyloterini, including Phialophoropsis trypodendri from Trypodendron scabricollis and Phialophoropsis ferruginea comb. nov. from Trypodendron lineatum. Each of the ten named species was distinguished by ITS rDNA barcoding and morphology, and the ITS rDNA sequences of four other putative species were obtained with Ceratocystidaceae-specific primers and template DNA extracted from beetles or galleries. These results support the hypothesis that each ambrosia beetle species with large, complex mycangia carries its own fungal symbiont. Conidiophore morphology and phylogenetic analyses using 18S (SSU) rDNA and TEF1α DNA sequences suggest that these three fungal genera within the Ceratocystidaceae independently adapted to symbiosis with the three respective beetle tribes. In turn, the beetle genera with large, complex mycangia appear to have evolved from other genera in their respective tribes that have smaller, less selective mycangia and are associated with Raffaelea spp. (Ophiostomatales).


Assuntos
Ascomicetos/isolamento & purificação , Ascomicetos/fisiologia , Variação Genética , Simbiose , Gorgulhos/microbiologia , Ambrosia/parasitologia , Animais , Ascomicetos/classificação , Ascomicetos/genética , Análise por Conglomerados , DNA Fúngico/química , DNA Fúngico/genética , DNA Ribossômico/química , DNA Ribossômico/genética , DNA Espaçador Ribossômico/química , DNA Espaçador Ribossômico/genética , Dados de Sequência Molecular , Fator 1 de Elongação de Peptídeos/genética , Filogenia , RNA Ribossômico 18S/genética , Análise de Sequência de DNA
5.
Mycologia ; 106(4): 835-45, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24895423

RESUMO

Isolations from the granulate ambrosia beetle, Xylosandrus crassiusculus (Coleoptera: Curculionidae: Scolytinae: Xyleborini), collected in Georgia, South Carolina, Missouri and Ohio, yielded an undescribed species of Ambrosiella in thousands of colony-forming units (CFU) per individual female. Partial sequences of ITS and 28S rDNA regions distinguished this species from other Ambrosiella spp., which are asexual symbionts of ambrosia beetles and closely related to Ceratocystis spp. Ambrosiella roeperi sp. nov. produces sporodochia of branching conidiophores with disarticulating swollen cells, and the branches are terminated by thick-walled aleurioconidia, similar to the conidiophores and aleurioconidia of A. xylebori, which is the mycangial symbiont of a related ambrosia beetle, X. compactus. Microscopic examinations found homogeneous masses of arthrospore-like cells growing in the mycangium of X. crassiusculus, without evidence of other microbial growth. Using fungal-specific primers, only the ITS rDNA region of A. roeperi was amplified and sequenced from DNA extractions of mycangial contents, suggesting that it is the primary or only mycangial symbiont of this beetle in USA.


Assuntos
Ascomicetos/classificação , Besouros/microbiologia , Animais , Ascomicetos/citologia , Ascomicetos/genética , Ascomicetos/isolamento & purificação , Sequência de Bases , DNA Fúngico/química , DNA Fúngico/genética , DNA Ribossômico/química , DNA Ribossômico/genética , DNA Espaçador Ribossômico/química , DNA Espaçador Ribossômico/genética , Feminino , Georgia , Missouri , Dados de Sequência Molecular , Técnicas de Tipagem Micológica , Ohio , Análise de Sequência de DNA , South Carolina , Especificidade da Espécie , Simbiose
6.
Appl Environ Microbiol ; 70(3): 1328-35, 2004 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-15006750

RESUMO

Three expedition huts in the Ross Sea region of Antarctica, built between 1901 and 1911 by Robert F. Scott and Ernest Shackleton, sheltered and stored the supplies for up to 48 men for 3 years during their explorations and scientific investigation in the South Pole region. The huts, built with wood taken to Antarctica by the early explorers, have deteriorated over the past decades. Although Antarctica has one of the coldest and driest environments on earth, microbes have colonized the wood and limited decay has occurred. Some wood in contact with the ground contained distinct microscopic cavities within secondary cell walls caused by soft rot fungi. Cadophora spp. could be cultured from decayed wood and other woods sampled from the huts and artifacts and were commonly associated with the soft rot attack. By using internal transcribed spacer sequences of ribosomal DNA and morphological characteristics, several species of Cadophora were identified, including C. malorum, C. luteo-olivacea, and C. fastigiata. Several previously undescribed Cadophora spp. also were found. At the Cape Evans and Cape Royds huts, Cadophora spp. commonly were isolated from wood in contact with the ground but were not always associated with soft rot decay. Pure cultures of Cadophora used in laboratory decay studies caused dark staining of all woods tested and extensive soft rot in Betula and Populus wood. The presence of Cadophora species, but only limited decay, suggests there is no immediate threat to the structural integrity of the huts. These fungi, however, are widely found in wood from the historic huts and have the capacity to cause extensive soft rot if conditions that are more conducive to decay become common.


Assuntos
Expedições/história , Fungos/isolamento & purificação , Madeira , Regiões Antárticas , Ascomicetos/classificação , Ascomicetos/genética , Ascomicetos/isolamento & purificação , DNA Fúngico/genética , DNA Fúngico/isolamento & purificação , Microbiologia Ambiental , Fungos/classificação , Fungos/genética , História do Século XX , Microscopia Eletrônica de Varredura , Filogenia
7.
Mycologia ; 95(5): 781-92, 2003.
Artigo em Inglês | MEDLINE | ID: mdl-21148985

RESUMO

Morphology, mitochondrial DNA (mtDNA) restriction fragment polymorphisms (RFLPs) and nuclear DNA (nDNA) fingerprinting were used to clarify relationships among the morphologically similar Ophiostoma and Leptographium species associated with mycangia of three Dendroctonus bark beetles (Ophiostoma clavigerum associated with both D. ponderosae and D. jeffreyi, and L. pyrinum associated with D. adjunctus), as well as a closely related nonmycangial bark beetle associate (L. terebrantis). Most isolates of O. clavigerum form long (40-70 µm), septate conidia, while all isolates of L. terebrantis and L. pyrinum form conidia less than 17.0 µm in length. The conidia of L. pyrinum are pyriform, with truncate bases, while the conidia of the other species form only slightly truncate bases. Conidial masses of L. terebrantis are creamy yellow, while the conidial masses of the other species are white. Nuclear DNA fingerprints resulting from probing PstI restrictions with the oligonucleotide probe (CAC)(5) and HaeIII and MspI restrictions of mtDNA, exhibited three major clusters. In the dendrogram developed from mtDNA RFLPs, the L. pyrinum isolates formed one cluster, while the majority of O. clavigerum isolates, including all D. jeffreyi isolates, formed another. A third cluster was composed of all L. terebrantis isolates, as well as several O. clavigerum isolates from D. ponderosae. The inclusion of some O. clavigerum isolates in the L. terebrantis cluster suggests that horizontal transfer of mtDNA has occurred among these fungi. The nDNA dendrogram also exhibited three clusters, and most isolates of L. pyrinum, L. terebrantis and O. clavigerum grouped separately; however, one isolate of O. clavigerum grouped with the L. terebrantis isolates, while one isolate of L. terebrantis grouped with O. clavigerum. No genetic markers were found that distinguished between O. clavigerum associated with D. ponderosae and O. clavigerum associated with D. jeffreyi. Ophiostoma clavigerum might be a recently diverged morphological variant of L. terebrantis, with special adaptations for grazing by young adults of D. jeffreyi and D. ponderosae. The anamorph of O. clavigerum, Graphiocladiella clavigerum, is transferred to Leptographium.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...