Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Proteome Res ; 12(6): 2833-45, 2013 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-23651394

RESUMO

Epidemiological research has indicated a relationship between infant formula feeding and increased risk of chronic diseases later in life including obesity, type-2 diabetes, and cardiovascular disease. The present study used an infant rhesus monkey model to compare the comprehensive metabolic implications of formula- and breast-feeding practices using NMR spectroscopy to characterize metabolite fingerprints from urine and serum, in combination with anthropometric measurements, fecal microbial profiling, and cytokine measurements. Here we show that formula-fed infants are larger than their breast-fed counterparts and have a different gut microbiome that includes higher levels of bacteria from the Ruminococcus genus and lower levels of bacteria from the Lactobacillus genus. In addition, formula-fed infants have higher serum insulin coupled with higher amino acid levels, while amino acid degradation products were higher in breast-fed infants. Increases in serum and urine galactose and urine galactitol were observed in the second month of life in formula-fed infants, along with higher levels of TNFα, IFN-γ, IL-1ß, IL-4, and other cytokines and growth factors at week 4. These results demonstrate that metabolic and gut microbiome development of formula-fed infants is different from breast-fed infants and that the choice of infant feeding may hold future health consequences.


Assuntos
Animais Recém-Nascidos/sangue , Fórmulas Infantis/metabolismo , Macaca mulatta/sangue , Metabolômica , Microbiota , Aminoácidos/sangue , Animais , Animais Recém-Nascidos/imunologia , Animais Recém-Nascidos/urina , Alimentação com Mamadeira , Aleitamento Materno , Citocinas/sangue , Fezes/microbiologia , Feminino , Galactitol/urina , Galactose/urina , Humanos , Lactente , Fórmulas Infantis/administração & dosagem , Insulina/sangue , Lactobacillus/imunologia , Macaca mulatta/imunologia , Macaca mulatta/urina , Espectroscopia de Ressonância Magnética , Masculino , Ruminococcus/imunologia
2.
J Pediatr Gastroenterol Nutr ; 56(4): 355-63, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23201704

RESUMO

OBJECTIVES: Rhesus macaque monkeys are widely used as models for human physiology and behavior. They are particularly suited for studies on infant nutrition and metabolism; however, few studies have directly compared their metabolic or microbiological phenotypes. The aim of the present study was to compare the metabolomic profiles and microbiome of milk from human and rhesus mothers, and the metabolomic profiles of urine and serum from human and rhesus infants to establish the value of this model for human nutrition research. METHODS: Milk samples were collected from rhesus and human mothers at similar stages of lactation. Urine and serum samples were collected from breast-fed rhesus and human infants. H nuclear magnetic resonance spectra were acquired for all samples and metabolites were identified and quantified using targeted profiling techniques. The microbial community structure of milk was examined using 16S rRNA gene sequencing. RESULTS: An identical set of metabolites was identified in the urine and serum profiles from human and rhesus infants. In urine, 65% of the metabolites were present at similar concentrations, whereas ~40% were similar in serum. The gross composition of human and rhesus milk was comparable, including the overall microbial community at both the phylum and order level; however, some oligosaccharides found in human milk were not present in monkey milk. CONCLUSIONS: Comparison of the milk microbiome and urine, serum, and milk metabolome of rhesus macaques and humans has revealed substantial similarities that provide unique biological information highlighting the significance of rhesus macaques as a model for infant nutrition and developmental research.


Assuntos
Desenvolvimento Infantil , Fenômenos Fisiológicos da Nutrição do Lactente , Macaca mulatta/metabolismo , Modelos Animais , Animais , Sangue/metabolismo , Feminino , Bactérias Gram-Negativas/classificação , Bactérias Gram-Negativas/crescimento & desenvolvimento , Bactérias Gram-Negativas/isolamento & purificação , Bactérias Gram-Positivas/classificação , Bactérias Gram-Positivas/crescimento & desenvolvimento , Bactérias Gram-Positivas/isolamento & purificação , Humanos , Lactente , Macaca mulatta/crescimento & desenvolvimento , Macaca mulatta/microbiologia , Masculino , Metabolômica/métodos , Leite/metabolismo , Leite/microbiologia , Leite Humano/metabolismo , Leite Humano/microbiologia , Tipagem Molecular , Especificidade da Espécie , Urina/química
3.
J Nutr Biochem ; 22(11): 995-1002, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21999844

RESUMO

Nutrition is the cornerstone of health; survival depends on acquiring essential nutrients, and dietary components can both prevent and promote disease. Metabolomics, the study of all small molecule metabolic products in a system, has been shown to provide a detailed snapshot of the body's processes at any particular point in time, opening up the possibility of monitoring health and disease, prevention and treatment. Metabolomics has the potential to fundamentally change clinical chemistry and, by extension, the fields of nutrition, toxicology and medicine. Technological advances, combined with new knowledge of the human genome and gut microbiome, have made and will continue to make possible earlier, more accurate, less invasive diagnoses, all while enhancing our understanding of the root causes of disease and leading to a generation of dietary recommendations that enable optimal health. This article reviews the recent contributions of metabolomics to the fields of nutrition, toxicology and medicine. It is expected that these fields will eventually blend together through development of new technologies in metabolomics and genomics into a new area of clinical chemistry: personalized medicine.


Assuntos
Metabolômica , Ciências da Nutrição , Animais , Doenças Cardiovasculares/fisiopatologia , Dieta , Saúde , Humanos , Neoplasias/fisiopatologia , Medicina de Precisão , Toxicologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...