Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomacromolecules ; 25(6): 3325-3334, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38775494

RESUMO

Molecules that inhibit the growth of ice crystals are highly desirable for applications in building materials, foods, and agriculture. Antifreezes are particularly essential in biomedicine for tissue banking, yet molecules currently in use have known toxic effects. Antifreeze glycoproteins have evolved naturally in polar fish species living in subzero climates, but practical issues with collection and purification have limited their commercial use. Here, we present a synthetic strategy using polymerization of amino acid N-carboxyanhydrides to produce polypeptide mimics of these potent natural antifreeze proteins. We investigated a set of mimics with varied structural properties and identified a glycopolypeptide with potent ice recrystallization inhibition properties. We optimized for molecular weight, characterized their conformations, and verified their cytocompatibility in a human cell line. Overall, we present a material that will have broad applications as a biocompatible antifreeze.


Assuntos
Proteínas Anticongelantes , Proteínas Anticongelantes/química , Humanos , Glicosilação , Animais , Gelo , Cristalização , Linhagem Celular , Glicopeptídeos/química , Glicopeptídeos/farmacologia
2.
ACS Polym Au ; 3(5): 383-393, 2023 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-37841952

RESUMO

Polyproline is a material of great interest in biomedicine due to its helical scaffold of structural importance in collagen and mucins and its ability to gel and to change conformations in response to temperature. Appending of function-modulating chemical groups to such a material is desirable to diversify potential applications. Here, we describe the synthesis of high-molecular-weight homo, block, and statistical polymers of azide-functionalized proline. The azide groups served as moieties for highly efficient click-grafting, as stabilizers of the polyproline PPII helix, and as modulators of thermoresponsiveness. Saccharides and ethylene glycol were utilized to explore small-molecule grafting, and glutamate polymers were utilized to form polyelectrolyte bottlebrush architectures. Secondary structure effects of both the azide and click modifications, as well as lower critical solution temperature behavior, were characterized. The polyazidoprolines and click products were well tolerated by live human cells and are expected to find use in diverse biomedical applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...