Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
RNA ; 6(8): 1120-30, 2000 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-10943891

RESUMO

Base substitutions in U2/U6 helix I, a conserved base-pairing interaction between the U6 and U2 snRNAs, have previously been found to specifically block the second catalytic step of nuclear pre-mRNA splicing. To further assess the role of U2/U6 helix I in the second catalytic step, we have screened mutations in U2/U6 helix I to identify those that influence 3' splice site selection using a derivative of the yeast actin pre-mRNA. In these derivatives, the spacing between the branch site adenosine and 3' splice site has been reduced from 43 to 12 nt and this results in enhanced splicing of mutants in the conserved 3' terminal intron residue. In this context, mutation of the conserved 3' intron terminal G to a C also results in the partial activation of a nearby cryptic 3' splice site with U as the 3' terminal intron nucleotide. Using this highly sensitive mutant substrate, we have identified a mutation in the U6 snRNA (U57A) that significantly increases the selection of the cryptic 3' splice site over the normal 3' splice site and augments its utilization relative to that observed with the wild-type U2 or U6 snRNAs. In a previous study, we found that the same U6 mutation suppressed the effects of an A-to-G branch site mutation in an allele-specific fashion. The ability of U6-U57 mutants to influence the fidelity of both branch site and 3' splice site recognition suggests that this nucleotide may participate in the formation of the active site(s) of the spliceosome.


Assuntos
Mutação , Precursores de RNA/genética , Splicing de RNA , RNA Nuclear Pequeno/genética , Actinas/genética , Adenosina/genética , Alelos , Sequência de Bases , Sítios de Ligação , Catálise , Núcleo Celular/genética , Íntrons , Dados de Sequência Molecular , Plasmídeos/metabolismo , RNA Fúngico/metabolismo , Saccharomyces cerevisiae/genética
2.
Mol Cell Biol ; 20(6): 2176-85, 2000 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-10688664

RESUMO

To explore the dynamics of snRNP structure and function, we have studied Cus1p, identified as a suppressor of U2 snRNA mutations in budding yeast. Cus1p is homologous to human SAP145, a protein present in the 17S form of the human U2 snRNP. Here, we define the Cus1p amino acids required for function in yeast. The segment of Cus1p required for binding to Hsh49p, a homolog of human SAP49, is contained within an essential region of Cus1p. Antibodies against Cus1p coimmunoprecipitate U2 snRNA, as well as Hsh155p, a protein homologous to human SAP155. Biochemical fractionation of splicing extracts and reconstitution of heat-inactivated splicing extracts from strains carrying a temperature-sensitive allele of CUS1 indicate that Cus1p and Hsh155p reside in a functional, high-salt-stable complex that is salt-dissociable from U2 snRNA. We propose that Cus1p, Hsh49p, and Hsh155p exist in a stable protein complex which can exchange with a core U2 snRNP and which is necessary for U2 snRNP function in prespliceosome assembly. The Cus1p complex shares functional as well as structural similarities with human SF3b.


Assuntos
Proteínas Fúngicas/genética , Splicing de RNA , RNA Nuclear Pequeno/genética , Proteínas de Ligação a RNA , Proteínas Ribossômicas/genética , Proteínas de Saccharomyces cerevisiae , Proteínas Adaptadoras de Transdução de Sinal , Sequência de Aminoácidos , Humanos , Dados de Sequência Molecular , Mutação , Fosfoproteínas/genética , Fatores de Processamento de RNA , Ribonucleoproteína Nuclear Pequena U2/genética , Saccharomyces cerevisiae/genética , Alinhamento de Sequência
3.
Nucleic Acids Res ; 28(6): 1313-21, 2000 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-10684925

RESUMO

Using site-specific incorporation of the photo-chemical cross-linking reagent 4-thiouridine, we demonstrate the previously unknown association of two proteins with yeast 3' splice sites. One of these is an unidentified approximately 122 kDa protein that cross-links to 3' splice sites during formation of the pre--spliceosome. The other factor is the DExH-box RNA helicase, Prp22p. With substrates functional in the second step of splicing, only very weak cross-linking of Prp22p to intron sequences at the 3' splice site is observed. In contrast, substrates blocked at the second step exhibit strong cross-linking of Prp22 to intron sequences at the 3' splice site, but not to adjacent exon sequences. In vitro reconstitution experiments also show that the association of Prp22p with intron sequences at the 3' splice site is dependent on Prp16p and does not persist when release of mature mRNA from the spliceosome is blocked. Taken together, these results suggest that the 3' splice site of yeast introns is contacted much earlier than previously envisioned by a protein of approximately 120 kDa, and that a transient association of Prp22p with the 3' splice site occurs between the first and second catalytic steps.


Assuntos
Proteínas Fúngicas/metabolismo , Íntrons/genética , RNA Helicases/metabolismo , Precursores de RNA/metabolismo , Splicing de RNA/genética , RNA Mensageiro/metabolismo , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Actinas/genética , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Trifosfato de Adenosina/metabolismo , Sequência de Bases , Catálise , Núcleo Celular/genética , Reagentes de Ligações Cruzadas/metabolismo , RNA Helicases DEAD-box , Éxons/genética , Proteínas Fúngicas/genética , Peso Molecular , Mutação/genética , Precursores de RNA/genética , Fatores de Processamento de RNA , RNA Fúngico/genética , RNA Fúngico/metabolismo , RNA Mensageiro/genética , Proteínas de Ligação a RNA/química , Proteínas de Ligação a RNA/metabolismo , Sequências Reguladoras de Ácido Nucleico/genética , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/enzimologia , Spliceossomos/enzimologia , Spliceossomos/genética , Tiouridina/metabolismo
4.
Biochemistry ; 37(50): 17618-28, 1998 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-9860878

RESUMO

The bacterial RNase P ribozyme is a site-specific endonuclease that catalyzes the removal of pre-tRNA leader sequences to form the 5' end of mature tRNA. While several specific interactions between enzyme and substrate that direct this process have been determined, nucleotides on the ribozyme that interact directly with functional groups at the cleavage site are not well-defined. To identify individual nucleotides in the ribozyme that are in close proximity to the pre-tRNA cleavage site, we introduced the short-range photoaffinity cross-linking reagent 6-thioguanosine (s6G) at position +1 of tRNA and position -1 in a tRNA bearing a one-nucleotide leader sequence [tRNA(G-1)] and examined cross-linking in representatives of the two structural classes of bacterial RNase P RNA (from Escherichia coli and Bacillus subtilis). These photoagent-modified tRNAs bind with similar high affinity to both ribozymes, and the substrate bearing a single s6G upstream of the cleavage (-1) site is cleaved accurately. Interestingly, s6G at position +1 of tRNA cross-links with high efficiency to homologous positions in J5/15 in both E. coli and B. subtilis RNase P RNAs, while s6G at position -1 of tRNA(G-1) cross-links to homologous nucleotides in J18/2. Both cross-links are detected over a range of ribozyme and substrate concentrations, and importantly, ribozymes cross-linked to position -1 of tRNA(G-1) accurately cleave the covalently attached substrate. These data indicate that the conserved guanosine at the 5' end of tRNA is adjacent to A248 (E. coli) of J5/15, while the base upstream of the substrate phosphate is adjacent to G332 (E. coli) of J18/2 and, along with available biochemical data, suggest that these nucleotides play a direct role in binding the substrate at the cleavage site.


Assuntos
Proteínas de Bactérias/metabolismo , Reagentes de Ligações Cruzadas/metabolismo , DNA Bacteriano/metabolismo , Endorribonucleases/metabolismo , Proteínas de Escherichia coli , Nucleotídeos/metabolismo , Marcadores de Fotoafinidade/metabolismo , Precursores de RNA/metabolismo , RNA Catalítico/metabolismo , RNA de Transferência/metabolismo , Bacillus subtilis/enzimologia , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Sítios de Ligação/genética , Catálise , DNA Bacteriano/química , Endorribonucleases/química , Endorribonucleases/genética , Escherichia coli/enzimologia , Guanosina/análogos & derivados , Guanosina/metabolismo , Hidrólise , Conformação de Ácido Nucleico , Nucleotídeos/química , RNA Catalítico/química , RNA Catalítico/genética , Ribonuclease P , Tionucleosídeos/metabolismo
5.
RNA ; 2(11): 1110-23, 1996 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-8903342

RESUMO

The small nuclear RNA (snRNA) components of the spliceosome have been proposed to catalyze the excision of introns from nuclear pre-mRNAs. If this hypothesis is correct, then the snRNA components of the spliceosome may interact directly with the reactive groups of pre-mRNA substrates. To explore this possibility, a genetic screen has been used to identify potential interactions between the U6 RNA and the pre-mRNA branch site. Notably, the selection yielded mutants in two regions of the yeast U6 RNA implicated previously in the catalytic events of splicing. These mutants significantly increase the splicing of pre-mRNA substrates containing non-adenosine branch sites. U6 mutants in U2/U6 helix Ia show strong allele-specific interactions with the branch site nucleotide and interact with PRP16, a factor implicated previously in branch site utilization. The other mutants cluster in the intramolecular helix of U6 and suppress the effects of branch site mutations in a nonallele-specific fashion. The locations of these mutants may define positions important for binding of the U6 intramolecular helix to the catalytic core of the spliceosome.


Assuntos
Precursores de RNA/metabolismo , RNA Fúngico/metabolismo , RNA Nuclear Pequeno/metabolismo , Sequência de Bases , Sítios de Ligação/genética , Íntrons , Dados de Sequência Molecular , Mutação , Conformação de Ácido Nucleico , Precursores de RNA/química , Precursores de RNA/genética , Splicing de RNA/genética , RNA Fúngico/química , RNA Fúngico/genética , RNA Nuclear Pequeno/química , RNA Nuclear Pequeno/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Spliceossomos/genética , Spliceossomos/metabolismo , Supressão Genética
6.
Cell ; 71(5): 819-31, 1992 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-1423632

RESUMO

We have used an in vitro reconstitution system to determine the effects of a large number of mutations in the highly conserved 5' terminal domain of the yeast U2 snRNA on pre-mRNA splicing. Whereas many mutations have little or no functional consequence, base substitutions in two regions were found to have drastic effects on pre-mRNA splicing. A previously unrecognized function for the U2 snRNA in the second step of splicing was found by alteration of the absolutely conserved sequence AGA upstream of the branch point recognition sequence. The effects of these mutations suggest the formation of a structure involving the U2 snRNA similar to the guanosine-binding site found in the catalytic core of group I introns.


Assuntos
Splicing de RNA , RNA Nuclear Pequeno/metabolismo , Actinas/genética , Sequência de Bases , Sequência Consenso , Análise Mutacional de DNA , Ligação de Hidrogênio , Técnicas In Vitro , Íntrons , Dados de Sequência Molecular , Estrutura Molecular , Conformação de Ácido Nucleico , Precursores de Ácido Nucleico/metabolismo , Reação em Cadeia da Polimerase , RNA Fúngico/metabolismo , RNA Mensageiro/metabolismo , Saccharomyces cerevisiae , Alinhamento de Sequência , Relação Estrutura-Atividade , Fatores de Tempo
7.
J Mol Biol ; 218(1): 99-105, 1991 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-2002510

RESUMO

Binary complexes between messenger RNA and E. coli ribosomes were examined. A ribosome-mRNA binary complex on T4 gene 32 mRNA withstood inhibition by antibodies against ribosomal protein S1. Anti-S1 blocks ternary complex formation, as measured by "extension inhibition" or "toeprinting" analysis, only when preincubated with ribosomes prior to mRNA addition and not when anti-S1 was added after preincubation of ribosomes and mRNA. The ribosome was directly localized in a binary complex on two translation initiation sites by toeprinting analysis. In the absence of tRNA the ribosome halted cDNA synthesis by reverse transcriptase close to the Shine and Dalgarno sequence. Binary complex formation was inhibited by an oligodeoxynucleotide competitor of the Shine and Dalgarno sequence.


Assuntos
Escherichia coli/metabolismo , Iniciação Traducional da Cadeia Peptídica , RNA Mensageiro/metabolismo , RNA de Transferência/genética , Ribossomos/metabolismo , Sequência de Bases , Escherichia coli/genética , Modelos Genéticos , Dados de Sequência Molecular , Conformação de Ácido Nucleico , Sondas de Oligonucleotídeos , Plasmídeos , RNA Mensageiro/genética , Mapeamento por Restrição
8.
J Mol Biol ; 218(1): 83-97, 1991 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-1705985

RESUMO

We have studied the classic initiation elements of mRNA sequence and structure to better understand their influence on translation initiation rates in Escherichia coli. Changes introduced in the initiation codon, the Shine and Dalgarno sequence, the spacing between those two elements, and in the secondary structures within initiation domains each change the rate of 30 S ternary complex formation. We measured these differences using extension inhibition analysis, a technique we have called "toeprinting". The rate of 30 S initiation complex formation in the absence of initiation factors agrees well with in vivo translation rates in some instances, although in others a regulatory role of initiation factors in 30 S complex formation is likely. Nucleotides 5' to the Shine and Dalgarno domain facilitate ternary complex formation.


Assuntos
Escherichia coli/genética , Iniciação Traducional da Cadeia Peptídica , RNA Mensageiro/genética , Anticódon/genética , Sequência de Bases , Escherichia coli/metabolismo , Cinética , Dados de Sequência Molecular , Conformação de Ácido Nucleico , Sondas de Oligonucleotídeos , RNA Mensageiro/metabolismo , RNA de Transferência/genética , DNA Polimerase Dirigida por RNA/metabolismo , beta-Galactosidase/genética
9.
Genes Dev ; 3(12B): 2124-36, 1989 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-2560754

RESUMO

A system for the functional reconstitution of yeast U2 snRNPs using synthetic U2 RNAs is described. We use oligonucleotide-directed RNase H cleavage to specifically deplete yeast extracts of their endogenous full-length U2 snRNA and consequently inactivate pre-mRNA splicing activity. The subsequent addition of synthetic yeast U2 RNAs, derived by in vitro transcription (T7U2 RNAs), to these oligonucleotide-treated extracts efficiently reconstitutes their ability to splice pre-mRNA. The use of deletion derivatives of the T7U2 RNA has demonstrated that the region downstream from the conserved Sm-binding site sequence in the yeast U2 RNA is not absolutely required for pre-mRNA splicing activity in vitro. Furthermore, we found that both human and rat U2 RNAs can function in yeast extracts. We also show that point mutations in the yeast U2 RNA can be analyzed using the in vitro reconstitution system. Allele-specific suppression of mutations in pre-mRNA branch site sequence is observed when the appropriate compensatory mutations in the branch site recognition region of the T7U2 RNA are introduced. Finally, we present a model for the interaction of the U2 and U6 snRNAs during pre-mRNA splicing.


Assuntos
RNA Nuclear Pequeno/genética , Ribonucleoproteínas/genética , Leveduras/genética , Sequência de Bases , Endorribonucleases/metabolismo , Dados de Sequência Molecular , Mutação , Conformação de Ácido Nucleico , Regiões Promotoras Genéticas , Splicing de RNA , RNA Fúngico/genética , RNA Fúngico/metabolismo , RNA Nuclear Pequeno/metabolismo , Ribonuclease H , Ribonucleoproteínas/metabolismo , Ribonucleoproteínas Nucleares Pequenas , Fatores de Tempo , Transcrição Gênica
10.
Genes Dev ; 3(12B): 2137-50, 1989 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-2560755

RESUMO

U6 small nuclear RNA (snRNA) is the most highly conserved spliceosomal RNA, and it has been postulated to have a fundamental role in pre-mRNA splicing. To elucidate this role, we developed an in vitro system for reconstituting the functional U6 small ribonucleoprotein (snRNP). Treating splicing extracts with an oligonucleotide complementary to the central domain of U6 snRNA leads to both RNase H cleavage of the endogenous U6 snRNA and loss of splicing activity. Yeast U6 RNA, synthesized in vitro using T7 RNA polymerase, is then added to the oligonucleotide-treated extract, and restoration of splicing activity is monitored by the subsequent addition of substrate pre-mRNA. Addition of full-length, unmodified T7U6 snRNA (113 nucleotides) to oligonucleotide-treated extracts restores splicing activity efficiently. Using U6 RNA transcripts truncated at their 3' ends, we show that large deletions (39 nucleotides) produce molecules that are unable to restore splicing activity in vitro and cannot interact with the endogenous U4 snRNA or form a mature spliceosome. Finally, we show that substitution of the invariant G81 with C within the T7U6 RNA abolishes its ability of restoring splicing activity. Although the U4/U6 snRNP forms correctly, mature spliceosomes do not assemble.


Assuntos
Splicing de RNA , RNA Nuclear Pequeno/genética , Ribonucleoproteínas/genética , Leveduras/genética , Sequência de Bases , Northern Blotting , Análise Mutacional de DNA , Endorribonucleases/metabolismo , Humanos , Dados de Sequência Molecular , Oligonucleotídeos , RNA Fúngico/genética , Ribonuclease H , Ribonucleoproteínas/metabolismo , Ribonucleoproteínas Nucleares Pequenas , Homologia de Sequência do Ácido Nucleico
11.
Genes Dev ; 3(12A): 1899-912, 1989 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-2695390

RESUMO

We have developed a new technique, called 'toeprinting,' which has allowed a study of the tRNA-binding properties of Escherichia coli translation initiation complexes. In response to natural mRNAs, the initiator tRNA and a variety of elongator tRNAs bind to the same tRNA-binding site on the 30S ribosomal subunit as long as a cognate codon is present near the Shine and Dalgarno sequence. The selection of the initiator tRNA in 30S initiation complexes is accomplished by initiation factors IF2 and IF3. 70S ribosomes accept both initiator tRNA and elongator tRNAs on natural mRNAs, much like 30S ribosomal subunits; IF3 and IF2 do not, however, select the initiator tRNA on 70S initiation complexes unless the initiation factor IF1 is present.


Assuntos
Escherichia coli/genética , Fatores de Iniciação de Peptídeos/metabolismo , Biossíntese de Proteínas , RNA de Transferência/metabolismo , Ribossomos/metabolismo , Sequência de Bases , Códon , Dados de Sequência Molecular , Conformação de Ácido Nucleico , Fator de Iniciação 3 em Procariotos , RNA de Transferência/genética
13.
J Mol Biol ; 201(3): 517-35, 1988 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-3262167

RESUMO

We have identified the binding site on the bacteriophage T4 gene 32 mRNA responsible for autogenous translational regulation. We demonstrate that this site is largely unstructured and overlaps the initiation codon of gene 32 as previously predicted. Co-operative binding of gene 32 protein to this site specifically blocks the formation of 30 S-tRNA(fMet)-gene 32 mRNA ternary complexes and initiation of translation. The translational operator is bound co-operatively by gene 32 protein and this binding is facilitated by a nucleation site far upstream from the initiation codon. A similar unstructured mRNA lacking this nucleation site is also bound co-operatively, but only at concentrations of gene 32 protein higher than those needed to repress binding of ribosomes to the gene 32 mRNA. Some sequence-specific interactions may also influence this binding. Comparison of the bacteriophage T2, T4 and T6 gene 32 operator sequences leads us to propose that the nucleation site is a pseudoknot.


Assuntos
Regulação da Expressão Gênica , Genes Virais , RNA Mensageiro/genética , RNA Viral/genética , Fagos T/genética , Sequência de Bases , Sítios de Ligação , Dados de Sequência Molecular , Conformação de Ácido Nucleico , Regiões Operadoras Genéticas , Proteínas Virais
15.
Proc Natl Acad Sci U S A ; 84(23): 8515-9, 1987 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-3120192

RESUMO

The DNA binding domain of the gene 32 protein of the bacteriophage T4 contains a single "zinc-finger" sequence. The gene 32 protein is an extensively studied member of a class of proteins that bind relatively nonspecifically to single-stranded DNA. We have sequenced and characterized mutations in gene 32 whose defective proteins are activated by increasing the Zn(II) concentration in the growth medium. Our results identify a role for the gene 32 protein in activation of T4 late transcription. Several eukaryotic proteins with zinc fingers participate in activation of transcription, and the gene 32 protein of T4 should provide a simple, well-characterized system in which genetics can be utilized to study the role of a zinc finger in nucleic acid binding and gene expression.


Assuntos
DNA de Cadeia Simples/metabolismo , Proteínas de Ligação a DNA/metabolismo , Metaloproteínas/metabolismo , Fagos T/fisiologia , Fatores de Transcrição/metabolismo , Proteínas Virais/metabolismo , Zinco/fisiologia , Análise Mutacional de DNA , Replicação do DNA , Proteínas de Ligação a DNA/genética , Regulação da Expressão Gênica , Técnicas In Vitro , Metaloproteínas/genética , Mutação , Fatores de Transcrição/genética , Transcrição Gênica , Proteínas Virais/genética , Replicação Viral
16.
Nucleic Acids Res ; 14(14): 5813-26, 1986 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-3526285

RESUMO

The bacteriophage T4 lysozyme gene is transcribed at early and late times after infection of E. coli, but the early mRNA is not translated. DNA sequence analysis and mapping of the 5' ends of the lysozyme transcripts produced at different times after T4 infection show that the early mRNA is initiated some distance upstream from the gene. The early mRNA is not translated because of a stable secondary structure which blocks the translational initiation site. The stable RNA structure has been demonstrated by nuclease protection in vivo. After DNA replication begins, two late promoters are activated; the late transcripts are initiated at sites such that the secondary structure can not form, and translation of the late messages occurs.


Assuntos
Escherichia coli/genética , Genes Virais , Genes , Muramidase/genética , Biossíntese de Proteínas , Fagos T/genética , Sequência de Aminoácidos , Sequência de Bases , Escherichia coli/enzimologia , Homeostase , Cinética , Conformação de Ácido Nucleico , Regiões Promotoras Genéticas , Fagos T/enzimologia , Transcrição Gênica , Trítio
17.
Gene ; 41(1): 93-102, 1986.
Artigo em Inglês | MEDLINE | ID: mdl-2422090

RESUMO

The splice junction sequence of td mRNA from T4-infected cells has been determined (5'....GGU-CUA....3') and shown to be identical to that of the RNA ligation product encoded by the cloned gene [Belfort et al. Cell 41 (1985) 375-382]. The RNA processing functions, T4 RNA ligase, T4 polynucleotide kinase, and the host prr gene product appear not to be essential for exon ligation; neither are the host endoribonucleases RNase III, RNase P and RNase E required for intron excision. While these results are consistent with the autocatalytic splicing mechanism demonstrated in vitro [Chu et al. J. Biol. Chem. 260 (1985) 10680-10688], they leave unanswered the question of which protein(s), if any, might stimulate the in vivo reaction. Analysis of the products of the cloned td gene has led to identification of two td-encoded polypeptides, namely a polypeptide corresponding to the exon-I-coding sequence (NH2-TS), and the catalytically active thymidylate synthase (TS). Kinetic and nucleotide sequence data provide evidence that NH2-TS is the product of the primary transcript and that TS is encoded by spliced mRNA. These results suggest that splicing may provide a switch controlling the relative expression of NH2-TS and TS, two proteins with markedly different temporal appearances despite their identical transcriptional and translational start sites.


Assuntos
Splicing de RNA , RNA Mensageiro/genética , Fagos T/genética , Sequência de Bases , Clonagem Molecular , Escherichia coli/genética , Genes , Genes Bacterianos , Genes Virais , Cinética , Plasmídeos , DNA Polimerase Dirigida por RNA , Timidilato Sintase/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...