Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biol Chem ; 287(26): 21873-90, 2012 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-22544740

RESUMO

Melanocortin-4 receptor (MC4R) is a G-protein-coupled receptor expressed in the hypothalamus where it controls feeding behavior. MC4R cycles constitutively and is internalized at the same rate in the presence or absence of stimulation by the agonist, melanocyte-stimulating hormone (α-MSH). This is different from other G-protein-coupled receptors, such as ß(2)-adrenergic receptor (ß(2)AR), which internalizes more rapidly in response to agonist stimulation. Here, it is found that in immortalized neuronal Neuro2A cells expressing exogenous receptors, constitutive endocytosis of MC4R and agonist-dependent internalization of ß(2)AR were equally sensitive to clathrin depletion. Inhibition of MC4R endocytosis by clathrin depletion decreased the number of receptors at the cell surface that were responsive to the agonist, α-MSH, by 75%. Mild membrane cholesterol depletion also inhibited constitutive endocytosis of MC4R by ∼5-fold, while not affecting recycling of MC4R or agonist-dependent internalization of ß(2)AR. Reduced cholesterol did not change the MC4R dose-response curve to α-MSH, but it decreased the amount of cAMP generated per receptor number indicating that a population of MC4R at the cell surface becomes nonfunctional. The loss of MC4R function increased over time (25-50%) and was partially reversed by mutations at putative phosphorylation sites (T312A and S329A). This was reproduced in hypothalamic GT1-7 cells expressing endogenous MC4R. The data indicate that constitutive endocytosis of MC4R is clathrin- and cholesterol-dependent. MC4R endocytosis is required to maintain MC4R responsiveness to α-MSH by constantly eliminating from the plasma membrane a pool of receptors modified at Thr-312 and Ser-329 that have to be cycled to the endosomal compartment to regain function.


Assuntos
Colesterol/química , Receptor Tipo 4 de Melanocortina/química , alfa-MSH/metabolismo , Membrana Celular/metabolismo , Colesterol/metabolismo , Clatrina/química , Clatrina/metabolismo , Relação Dose-Resposta a Droga , Endocitose , Endossomos/metabolismo , Células HEK293 , Homeostase , Humanos , Mutação , RNA Interferente Pequeno/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Serina/química , Transdução de Sinais , Treonina/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...