Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Bio Protoc ; 9(24): e3455, 2019 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-33654950

RESUMO

The process of autophagy is an essential cellular mechanism, required to maintain general cell health through the removal of dysfunctional organelles, such as the ER, peroxisomes and mitochondria, as well as protein aggregates, and bacteria. Autophagy is an extremely dynamic process, and tools are constantly being developed to study the various steps of this process. This protocol details a method to study the end steps of autophagy-lysosomal fusion and the formation of the autolysosome. Many techniques have been used to study the various steps of the autophagy process. Here we describe the RedGreen-assay (RG-assay), an immunofluorescence-based technique used to visualize the targeting of substrates to the autolysosome in live cells. This technique takes advantage of the low lysosomal pH and over-expression of a tandem GFP-mCherry tagged protein targeted to an organelle of interest. While in the neutral cytosol or autophagosome, both GFP and RFP will fluoresce. However, within the autolysosome, the GFP signal is quenched due to the low pH environment and the RFP emission signal will predominate. This technique is readily quantifiable and amenable to high throughput experiments. Additionally, by tagging the GFP-RFP tandem fluorescent protein with organelle specific targeting sequences, it can be used to measure a wide range of substrates of autophagy.

2.
Hum Mol Genet ; 19(6): 987-1000, 2010 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-20026556

RESUMO

Human Wolf-Hirschhorn syndrome (WHS) is a multigenic disorder resulting from a hemizygous deletion on chromosome 4. LETM1 is the best candidate gene for seizures, the strongest haploinsufficiency phenotype of WHS patients. Here, we identify the Drosophila gene CG4589 as the ortholog of LETM1 and name the gene DmLETM1. Using RNA interference approaches in both Drosophila melanogaster cultured cells and the adult fly, we have assayed the effects of down-regulating the LETM1 gene on mitochondrial function. We also show that DmLETM1 complements growth and mitochondrial K(+)/H(+) exchange (KHE) activity in yeast deficient for LETM1. Genetic studies allowing the conditional inactivation of LETM1 function in specific tissues demonstrate that the depletion of DmLETM1 results in roughening of the adult eye, mitochondrial swelling and developmental lethality in third-instar larvae, possibly the result of deregulated mitophagy. Neuronal specific down-regulation of DmLETM1 results in impairment of locomotor behavior in the fly and reduced synaptic neurotransmitter release. Taken together our results demonstrate the function of DmLETM1 as a mitochondrial osmoregulator through its KHE activity and uncover a pathophysiological WHS phenotype in the model organism D. melanogaster.


Assuntos
Antiporters/genética , Proteínas de Ligação ao Cálcio/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Mutação/genética , Convulsões/complicações , Convulsões/genética , Síndrome de Wolf-Hirschhorn/complicações , Síndrome de Wolf-Hirschhorn/genética , Sequência de Aminoácidos , Animais , Antiporters/química , Antiporters/metabolismo , Proteínas de Ligação ao Cálcio/química , Proteínas de Ligação ao Cálcio/metabolismo , Regulação para Baixo , Proteínas de Drosophila/química , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/crescimento & desenvolvimento , Drosophila melanogaster/ultraestrutura , Olho/patologia , Olho/ultraestrutura , Técnicas de Silenciamento de Genes , Teste de Complementação Genética , Humanos , Mitocôndrias/metabolismo , Mitocôndrias/ultraestrutura , Proteínas Mitocondriais/química , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Dados de Sequência Molecular , Atividade Motora/fisiologia , Sistema Nervoso/patologia , Sistema Nervoso/fisiopatologia , Sistema Nervoso/ultraestrutura , Neurotransmissores/metabolismo , Especificidade de Órgãos , Interferência de RNA , Saccharomyces cerevisiae/metabolismo , Homologia de Sequência de Aminoácidos , Sinapses/metabolismo , Sinapses/ultraestrutura
3.
PLoS Genet ; 4(11): e1000284, 2008 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19043571

RESUMO

Small molecules have been shown to be potent and selective probes to understand cell physiology. Here, we show that imidazo[1,2-a]pyridines and imidazo[1,2-a]pyrimidines compose a class of compounds that target essential, conserved cellular processes. Using validated chemogenomic assays in Saccharomyces cerevisiae, we discovered that two closely related compounds, an imidazo[1,2-a]pyridine and -pyrimidine that differ by a single atom, have distinctly different mechanisms of action in vivo. 2-phenyl-3-nitroso-imidazo[1,2-a]pyridine was toxic to yeast strains with defects in electron transport and mitochondrial functions and caused mitochondrial fragmentation, suggesting that compound 13 acts by disrupting mitochondria. By contrast, 2-phenyl-3-nitroso-imidazo[1,2-a]pyrimidine acted as a DNA poison, causing damage to the nuclear DNA and inducing mutagenesis. We compared compound 15 to known chemotherapeutics and found resistance required intact DNA repair pathways. Thus, subtle changes in the structure of imidazo-pyridines and -pyrimidines dramatically alter both the intracellular targeting of these compounds and their effects in vivo. Of particular interest, these different modes of action were evident in experiments on human cells, suggesting that chemical-genetic profiles obtained in yeast are recapitulated in cultured cells, indicating that our observations in yeast can: (1) be leveraged to determine mechanism of action in mammalian cells and (2) suggest novel structure-activity relationships.


Assuntos
Antifúngicos/química , Piridinas/química , Pirimidinas/química , Saccharomyces cerevisiae/genética , Antifúngicos/farmacologia , Células Cultivadas , Dano ao DNA , Reparo do DNA , Humanos , Mitocôndrias/metabolismo , Piridinas/farmacologia , Pirimidinas/farmacologia , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/metabolismo , Transdução de Sinais
4.
Proc Natl Acad Sci U S A ; 105(19): 7070-5, 2008 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-18443288

RESUMO

Mitochondria form dynamic tubular networks that undergo frequent morphological changes through fission and fusion, the imbalance of which can affect cell survival in general and impact synaptic transmission and plasticity in neurons in particular. Some core components of the mitochondrial fission/fusion machinery, including the dynamin-like GTPases Drp1, Mitofusin, Opa1, and the Drp1-interacting protein Fis1, have been identified. How the fission and fusion processes are regulated under normal conditions and the extent to which defects in mitochondrial fission/fusion are involved in various disease conditions are poorly understood. Mitochondrial malfunction tends to cause diseases with brain and skeletal muscle manifestations and has been implicated in neurodegenerative diseases such as Parkinson's disease (PD). Whether abnormal mitochondrial fission or fusion plays a role in PD pathogenesis has not been shown. Here, we show that Pink1, a mitochondria-targeted Ser/Thr kinase linked to familial PD, genetically interacts with the mitochondrial fission/fusion machinery and modulates mitochondrial dynamics. Genetic manipulations that promote mitochondrial fission suppress Drosophila Pink1 mutant phenotypes in indirect flight muscle and dopamine neurons, whereas decreased fission has opposite effects. In Drosophila and mammalian cells, overexpression of Pink1 promotes mitochondrial fission, whereas inhibition of Pink1 leads to excessive fusion. Our genetic interaction results suggest that Fis1 may act in-between Pink1 and Drp1 in controlling mitochondrial fission. These results reveal a cell biological role for Pink1 and establish mitochondrial fission/fusion as a paradigm for PD research. Compounds that modulate mitochondrial fission/fusion could have therapeutic value in PD intervention.


Assuntos
Drosophila melanogaster/enzimologia , Mitocôndrias/enzimologia , Proteínas Quinases/metabolismo , Animais , Células COS , Chlorocebus aethiops , Proteínas do Citoesqueleto/metabolismo , Dopamina/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/citologia , Drosophila melanogaster/genética , Drosophila melanogaster/ultraestrutura , Proteínas de Ligação ao GTP/metabolismo , Genes de Insetos , Mitocôndrias/patologia , Mitocôndrias/ultraestrutura , Neurônios/citologia , Neurônios/enzimologia , Fenótipo , Ligação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...